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Mechanics of Solids (Theory of Elasticity)
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Definitions:

Elasticity:

The material returns to its original (unloaded) shape upon the removal of applied forces.

The graphs follow the same line whether loading or unloading

Homogeneous Material: properties do not vary with location.

Isotropic Material: properties are identical in all directions at a point.



External Forces:

there are two kinds

a) Surface Forces: Forces distributed over the surface of the body. (Atmospheric pressure, Hydraulic pressure)

b) Body Forces: Forces distributed over the volume of the body. (Gravitational forces, Centrifugal forces, Inertia
forces)

Note : A body responds to the application of external forces by deforming and by developing internal forces.



Stresses:

Stress is a measure of the internal forces per unit area within a body.



ΔF is the force acting on an element of area ΔA.

n, s₁ and s₂ constitute a set of orthogonal axes, origin placed at the point P, with n normal and s₁, s₂ tangent to
ΔA.

Decomposition of ΔF in to components parallel to n, s₁ and s₂, then the normal stress σₙ and the shear stresses are
given by:

σₙ= lim
ΔA →0

ΔFₙ
ΔA

τₛ₁= lim
ΔA →  0

ΔFₛ₁
ΔA

τₛ₂ = lim
ΔA →  0

ΔFₛ₂
ΔA



A Set of stresses on an infinite number of planes passing through a point forms the state of the stress at the point.
In order to define the state of stress at a point an elementary volume in the form of a right parallelepiped in the
vicinity of the point in question is isolated.



The equilibrium of moments in xy, yz and zx planes yield

τ 𝒙𝒚 = τ𝒚𝒙 , τ 𝒚𝒛 = τ𝒛𝒚 , τ 𝒛𝒙 = τ𝒙𝒛

For example:

Considering xy-plane

∑𝑴𝒌 𝟎

∴ 𝝉𝒙𝒚 .𝒅𝒚. 𝒅𝒛). 𝒅𝒙 – ( 𝝉𝒚𝒙 . 𝒅𝒙. 𝒅𝒛). 𝒅𝒚 =0

∴ τ 𝒙𝒚 = τ𝒚𝒙

Note:

On two planes at right angles to each other the components of shearing stresses perpendicular to the common
edge are equal and directed either both toward the edge or both away from the edge.



Relationships Between Stress and Strain 
(Generalized Hooke’s Law)

Hooke’s Law:

For an elastic material the strain produced is proportional to the applied stress.

For a linear elastic material the principle of superposition applies.

The effect of normal stress is to produce normal strains. The normal strains are unaffected by the shear stresses
but shear strains are produced by shear stresses.

The compete stress-strain relationships are:

𝜖 𝜎 𝞾 𝜎𝒚 𝜎𝒛 )] 𝜖𝒚 𝜎𝒚 𝞾 𝜎𝒙 𝜎𝒛 )] 𝜖𝒛 𝜎𝒛 𝞾 𝜎𝒙 𝜎𝒚 )]

𝛾 𝛾 𝛾



Relationships Between Stress and Strain 
(Generalized Hooke’s Law)

Where 𝝐 = Young’s modulus of elasticity

                  𝞾 = Poisson's ratio

G = Modulus of rigidity

The elastic constants 𝝐, 𝞾, G are related by :

                  𝑮= 𝝐
𝟐  𝟏 𝞾



Strain and Strain Displacement Relations 
(Cauchy's Equations)

Strain is a measure of the change in shape of a body.

For simplicity, consider a two dimensional case :

ABCD is the element before deformation.

𝑨 𝑩 𝑪 𝑫 is the element after deformation.

u= the displacement in the X-direction

v= the displacement in the Y-direction

Physically, small displacement means 𝑨 P   𝑨 𝑪 and ∡ P 𝑨 𝑪 is also small (i.e. , tan 𝜽 ≈ 𝜽) 





The normal (linear) strain is defined as the ratio of change in length to the initial length. The normal strain in X-
direction 𝝐𝒙 is

𝜖 1 1
𝐝𝒙 𝒖 𝒖 𝛛𝒖

𝛛𝒙⋅𝐝𝒙

𝐝𝒙
𝟏

= 1 1

Similarly          𝝐𝒚 = 

Shear strain is defined as the change in angle between two lines originally at right angles. The shear strain is 
(∡𝑅𝐴 𝐵  ∡𝑃𝐴 𝐶

Angle 𝑃𝐴 𝐶 = arctan  
⋅𝐝

 arctan 
𝐝

𝐝

=  since ≪ 𝟏



Similarly

Angle   𝑅𝐴 𝐵

So     

Shear strain    𝛾  ∡𝑃𝐴 𝐵 ∡𝑅𝐴 𝐵

= (Engineering shear strain )

Mathematical shear strain is equal to half engineering shear strain.

In the case of three dimensions,  𝑤 is the displacement in the Z- direction, then

𝜖 , 𝜖𝒚
𝒗
𝒚

, 𝜖𝒛
𝒘
𝒛

,

𝛾 ,         𝛾𝒚𝒛
𝒗
𝒛

𝒘
𝒚

,        𝛾𝒛𝒙
𝒘
𝒙

𝒖
𝒛

(these relationships are called Cauchy's equations)



Equation of Equilibrium  (Navier’s Equation)

Consider a small parallelepiped with sides of lengths 𝐝 𝐝𝒚 and 𝐝𝒛 .

Consider the equilibrium of forces in the X-direction

X. 𝐝 . 𝐝𝒚 . 𝐝𝒛 - 𝝈𝒙 . 𝐝𝒚 . 𝐝𝒛 + (𝝈𝒙 + 𝛛𝝈𝒙
𝛛𝒙

𝒅𝒙) 𝐝𝒚 . 𝐝𝒛 -𝝉𝒚𝒙 . 𝐝𝒛 . 𝐝 + (𝝉𝒚𝒙 +
𝛛𝝉𝒚𝒙

𝛛𝒚
. 𝐝𝒚 ) 𝐝 . 𝐝𝒛 - 𝝉𝒛𝒙 . 𝐝𝒚 . 𝐝 + (𝝉𝒛𝒙 + 𝛛𝝉𝒛𝒙

𝛛𝒛
. 𝐝𝒛 ) 𝐝𝒚 . 𝐝 =0

Where X is the X component of the body forces per unit volume.

Canceling (𝐝 . 𝐝𝒚 . 𝐝𝒛 )

𝛛𝝈𝒙
𝛛𝒙

+
𝛛𝝉𝒙𝒚

𝛛𝒚
+ 𝛛𝝉𝒙𝒛

𝛛𝒛
+X=0 ……………….. (1)

Similarly

𝛛𝝉𝒚𝒙

𝛛𝒙
+

𝛛𝝈𝒚

𝛛𝒚
+

𝛛𝝉𝒚𝒛

𝛛𝒛
+Y=0 ……………….. (2)

𝛛𝝉𝒛𝒙
 𝛛𝒙

+
𝛛𝝉𝒛𝒚

𝛛𝒚
+ 𝛛𝝈𝒛

𝛛𝒛
+Z=0 ………………... (3)



Equation of Equilibrium  (Navier’s Equation)

Here Y and Z are the y and z components of the body forces per unit volume.

Equations 1 to 3 are Navier’s Equation of equilibrium for an elastic solid.



Compatibility Equations

(Saint-Venant's Equations)

If u (x,y,z), v (x,y,z), and w (x,y,z) are given, then the whole six strain components can be derived by differentiation.
Compatibility is satisfied automatically. If the six strains 𝝐𝒙 (x,y,z), 𝝐𝒚 (x,y,z), 𝝐𝒛 (x,y,z), 𝜸𝒙𝒚(x,y,z), 𝜸𝒚𝒛(x,y,z), and
𝜸𝒛𝒙(x,y,z) are given, the three displacement components u (x,y,z), v (x,y,z), and w (x,y,z) can be determined uniquely
if and only if relations exist among the strains.

𝝐𝒙=𝝏𝒖
𝛛𝒙

∴ 𝝏
𝛛𝒚

(𝝐𝒙) = 𝝏𝟐𝒖
𝛛𝒚𝛛𝒙

∴ 𝝏
𝛛𝒚

( 𝝏
𝛛𝒚

𝝐𝒙) = 𝝏𝟐𝝐𝒙
𝛛𝒚𝟐 = 𝝏𝟑𝒖

𝛛𝒚𝟐𝛛𝒙

Similarly
𝝏𝟐𝝐𝒚

𝛛𝒙𝟐 = 𝝏𝟑𝒗
𝛛𝒙𝟐𝛛𝒚

But since
𝝏𝟐𝜸𝒙𝒚

𝛛𝐱 𝛛𝒚
= 𝝏𝟑𝒖

𝛛𝐱 𝛛𝒚𝟐 
+ 𝝏𝟑𝒗

𝛛𝐲 𝛛𝒙𝟐

It follows that 𝝏𝟐𝝐𝒙
𝛛𝒚𝟐 +

𝝏𝟐𝝐𝒚

𝛛𝒙𝟐 =
𝝏𝟐𝜸𝒙𝒚

𝛛𝐱 𝛛𝒚
……………….. (1)



Similarly
𝝏𝟐𝝐𝒚

𝛛𝒛𝟐 + 𝝏𝟐𝝐𝒛
𝛛𝒚𝟐 =

𝝏𝟐𝜸𝒚𝒛

𝛛𝐲 𝛛𝒛
………………. (2)

𝝏𝟐𝝐𝒛
𝛛𝒙𝟐 + 𝝏𝟐𝝐𝒙

𝛛𝒛𝟐 = 𝝏𝟐𝜸𝒛𝒙
𝛛𝐳 𝛛𝒙

………………. (3)

Also from Cauchy’s equations

𝝏𝟐𝝐𝒙
𝛛𝐲 𝛛𝒛

= 𝝏𝟑𝒖
𝛛𝐱 𝛛𝒚 𝛛𝐳

, 𝝏
𝛛𝒙

𝜸𝒚𝒛 = 𝝏𝟐𝒗
𝛛𝐱 𝛛𝒛

+ 𝝏𝟐𝒘
𝛛𝐱 𝛛𝒚

𝝏𝜸𝒙𝒛
𝛛𝒚

= 𝝏𝟐𝒖
𝛛𝐲 𝛛𝒛

+ 𝝏𝟐𝒘
𝛛𝐱 𝛛𝒚

, 𝝏
𝛛𝒛

𝜸𝒙𝒚= 𝝏𝟐𝒖
𝛛𝐲 𝛛𝒛

+ 𝝏𝟐𝒘
𝛛𝐱 𝛛𝒛

∴ 𝝏𝟐𝜸𝒙𝒚

𝛛𝐱 𝛛𝒛
-

𝝏𝟐𝜸𝒚𝒛

𝛛𝒙𝟐 + 𝝏𝟐𝜸𝒛𝒙
𝛛𝐱 𝛛𝒚

= 2 𝝏𝟑𝒖
𝛛𝐱 𝛛𝒚 𝛛𝐳

=2 𝝏𝟐𝝐𝒙
𝛛𝐲 𝛛𝒛

Or 𝝏
𝛛𝒙

[
𝝏𝜸𝒙𝒚

𝛛𝒛
-

𝝏𝜸𝒚𝒛

𝛛𝒙
+ 𝝏𝜸𝒛𝒙

𝛛𝒚
] =2 𝝏𝟐𝝐𝒙

𝛛𝐲 𝛛𝒛
……………… (4)

Similarly 𝝏
𝛛𝒚

[
𝝏𝜸𝒚𝒛

𝛛𝒙
- 𝝏𝜸𝒛𝒙

𝛛𝒚
+

𝝏𝜸𝒙𝒚

𝛛𝒛
] =2

𝝏𝟐𝝐𝒚

𝛛𝐳 𝛛𝒙
……………… (5)

𝝏
𝛛𝒛

[ 𝝏𝜸𝒛𝒙
𝛛𝒚

-
𝝏𝜸𝒙𝒚

𝛛𝒛
+

𝝏𝜸𝒚𝒛

𝛛𝒙
] =2 𝝏𝟐𝝐𝒛

𝛛𝐱 𝛛𝒚
……………… (6)



In terms of stresses, if there are no body forces or if the body forces are constants, the compatibility equation 1 to 6
become

𝜟 𝝈𝒙 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝛛𝒙𝟐 =0

𝜟 𝝈𝒚 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝛛𝒚𝟐 =0

𝜟 𝝈𝒛 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝛛𝒛𝟐 =0

𝜟 𝝉𝒚𝒛 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝝏𝒚 𝝏𝒛

=0

𝜟 𝝉𝒛𝒙 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝝏𝐳 𝝏𝒙

=0

𝜟 𝝉𝒙𝒚 + 𝟏
𝟏 𝒗

𝝏𝟐𝜽
𝝏𝐱 𝝏𝒚

=0

Where 𝜽 = 𝝈𝒙 + 𝝈𝒚 + 𝝈𝒛

𝜟 = 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐 + 𝝏𝟐

𝝏𝒛𝟐 (Laplacian operator)



Two – Dimensional Elasticity

There are two cases : Plane stress and plane strain problems.

Plane stress

One has a state of plane stress when the stresses satisfy the following conditions:

𝝈𝒛 = 𝝉𝒙𝒛 = 𝝉𝒚𝒛 =0 …………..……………. (1)

In this case the equations of equilibrium become:

𝝏𝝈𝒙
𝛛𝒙

+
𝝏𝝉𝒙𝒚

𝛛𝒚
+ X=0

and ……………….. (2)

𝝏𝝉𝒙𝒚

𝛛𝒙
+

𝝏𝝈𝒚

𝛛𝒚
+ Y=0



The compatibility equations reduce to

𝝏𝟐𝝐𝒙
𝛛𝒚𝟐

𝝏𝟐𝝐𝒚

𝛛𝒙𝟐
𝝏𝟐𝜸𝒙𝒚

𝛛𝐱 𝛛𝒚
………………………(3)

The strain – stress relations are

𝝐𝒙= 𝟏
𝑬

(𝝈𝒙 - 𝒗 𝝈𝒚)

𝝐𝒚= 𝟏
𝑬

(𝝈𝒚 - 𝒗 𝝈𝒙) …………………….(4)

𝝐𝒛= 𝒗
𝑬

(𝝈𝒙 + 𝝈𝒚)

𝜸𝒙𝒚=
𝝉𝒙𝒚

𝑮

𝜸𝒙𝒛  𝜸𝒚𝒛 =0 ……………………….(5)



Substituting the first two of Eqs.(4) and the first of Eqs.(5) into Eq.(3)

∴ 𝝏𝟐

𝝏𝒙𝟐 (𝝈𝒚 - 𝒗 𝝈𝒙 ) + 𝝏𝟐

𝝏𝒚𝟐 (𝝈𝒙 - 𝒗 𝝈𝒚 ) =2(1+ 𝒗)
𝝏𝟐𝝉𝒙𝒚

𝝏𝐱 𝝏𝒚
…(6)

Differentiating the first of Eqs. (2) w.r.t. x, the second w.r.t. y, and adding them together,

∴ 𝝏𝟐𝝉𝒙𝒚

𝝏𝐱 𝝏𝒚
= - 𝟏

𝟐
[𝝏𝟐𝝈𝒙

𝛛𝒙𝟐 +
𝝏𝟐𝝈𝒚

𝛛𝒚𝟐 + 𝝏𝑿
𝛛𝒙

+ 𝝏𝒀
𝛛𝒚

]………………….(7)

Substituting Eq. (7) into Eq. (6)

∴ ( 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐) (𝝈𝒙 + 𝝈𝒚)= - (1+𝒗) (𝝏𝑿
𝛛𝒙

+ 𝝏𝒀
𝛛𝒚

) ….............(8)

The case of plane stress represents, with only a very small error, the state of stress in a thin plate which is
subjected to forces applied at the boundary, parallel to the plane of the plate, and uniformly distributed over the
thickness.



Plane strain

One has the state of plane strain when the following conditions are satisfied

𝜸𝒙𝒛 = 𝝏𝒖
𝛛𝒛

+ 𝝏𝒘
𝛛𝒙

=0

𝜸𝒚𝒛 = 𝝏𝒗
𝛛𝒛

+ 𝝏𝒘
𝛛𝒚

=0 …………………(1)

𝝐𝒛 = 𝝏𝒘
𝛛𝒛

=0

Equilibrium equations become:

𝝏𝝈𝒙
𝛛𝒙

+
𝝏𝝉𝒙𝒚

𝛛𝒚
+ X=0 ……………….. (2) (the same as those for the plane stress case)

𝝏𝝉𝒚𝒙

𝛛𝒙
+

𝝏𝝈𝒚

𝛛𝒚
+ Y=0



The stress – strain relations are

𝝐𝒙= 𝟏
𝑬

[𝝈𝒙 - 𝒗 ( 𝝈𝒚 + 𝝈𝒛)]

𝝐𝒚= 𝟏
𝑬

[𝝈𝒚 - 𝒗 ( 𝝈𝒙+ 𝝈𝒛)] ………….. (3)

𝜸𝒙𝒚=
𝝉𝒙𝒚

𝑮

Since 𝝐𝒛= 𝟏
𝑬

[𝝈𝒛 - 𝒗 ( 𝝈𝒙+ 𝝈𝒚)]

∴ 𝝈𝒛 = 𝒗 ( 𝝈𝒙+ 𝝈𝒚)

Thus Eqs. (3) become

𝝐𝒙= 𝟏 𝒗
𝑬

[𝝈𝒙 (1- 𝒗) - 𝒗 𝝈𝒚]

𝝐𝒚= 𝟏 𝒗
𝑬

[𝝈𝒚 (1- 𝒗) - 𝒗 𝝈𝒙] ………….. (4)

𝜸𝒙𝒚=
𝝉𝒙𝒚

𝑮



The compatibility Eq. is

𝝏𝟐𝝐𝒙
𝛛𝒚𝟐

𝝏𝟐𝝐𝒚

𝛛𝒙𝟐
𝝏𝟐𝜸𝒙𝒚

𝛛𝐱 𝛛𝒚
………………….(5)

Using Eqs. (4) and (5)

∴ 𝝏𝟐

𝝏𝒚𝟐 [(1- 𝒗) 𝝈𝒙 - 𝒗 𝝈𝒚 ] + 𝝏𝟐

𝝏𝒙𝟐 [(1- 𝒗) 𝝈𝒚 - 𝒗 𝝈𝒙 ]= 2
𝝏𝟐𝝉𝒙𝒚

𝝏𝐱 𝝏𝒚
……………… (6)

Differentiating the first and second of Eqs.(2) w.r.t. x and y respectively, and adding:

2
𝝏𝟐𝝉𝒙𝒚

𝝏𝐱 𝝏𝒚
= - (𝝏𝟐𝝈𝒙

𝛛𝒙𝟐 +
𝝏𝟐𝝈𝒚

𝛛𝒚𝟐 ) – (𝝏𝑿
𝛛𝒙

+ 𝝏𝒀
𝛛𝒚

………………. (7)

Substituting Eq.(7) into Eq.(6)

∴ ( 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐) (𝝈𝒙 + 𝝈𝒚 ) = - 𝟏
𝟏 𝒗

(𝝏𝑿
𝛛𝒙

+ 𝝏𝒀
𝛛𝒚

) ………….(8)



In the absence of body forces or in the case of constant body forces, the compatibility equations for plane strain and
plane stress are the same, i.e.

( 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐) (𝝈𝒙 + 𝝈𝒚 ) =0 …………….. (9)

The case of plane strain is very closely

approximated in the case of a long

cylinder subjected to internal pressure.

The external forces are functions of the

x and y coordinates. As a consequence all

cross sections experience identical deformation.

At every cross section w=0



Taking the small triangular prism PBC so that the side BC coincides with the boundary of the body, and denoting by
𝒙 and 𝒚 the components of the surface forces by unit area, then

 𝒙 (1* 𝐝𝒔 = 𝝈𝒙 (1* 𝐝𝒚) + 𝝉𝒙𝒚 (1* 𝐝𝒙)

∴ 𝒙 = 𝝈𝒙
𝐝
𝐝

+ 𝝉𝒙𝒚  𝐝𝒙
𝐝

= 𝝈𝒙 .cos𝜶 + 𝝉𝒙𝒚 .cos𝜷

∴ 𝒙 = 𝝈𝒙 ℓ 𝝉𝒙𝒚 𝓂

Where ℓ cos𝜶 , 𝓂 cos𝜷

Similarly

𝒚 = 𝓂 𝝈𝒚 ℓ 𝝉𝒙𝒚

Here ℓ and 𝓂 are the direction cosines of the normal N to the boundary.



Saint – Venant Principle

If there is a disturbance in one locality of a stable field, then this disturbance will not spread far from its locality
when the resultant of disturbance is zero. In elasticity, if the applied force or moment does not produce stresses
according to the laws of stress distributions, then this disturbance is usually localized.

Stress Function

The solution of two dimensional problems in elasticity requires integration of the differential equations of
equilibrium together with the compatibility equation and the boundary conditions. For no body forces

𝝏𝝈𝒙
𝛛𝒙

+
𝝏𝝉𝒙𝒚

𝛛𝒚
=0

𝝏𝝉𝒙𝒚

𝛛𝒙
+

𝝏𝝈𝒚

𝛛𝒚
=0

( 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐) (𝝈𝒙 + 𝝈𝒚 ) =0

𝒙 = ℓ 𝝈𝒙 𝓂 𝝉𝒙𝒚 , 𝒚 = ℓ 𝝉𝒙𝒚 𝓂 𝝈𝒚



These equations are the same for both plane stress and plane strain problems.

The equations of equilibrium are identically satisfied by a new function 𝝓 (x,y), called the stress function, introduced
by G.B. Airy, related to stresses as :

𝝈𝒙= 𝝏𝟐𝝓
𝝏𝒚𝟐 , 𝝈𝒚= 𝝏𝟐𝝓

𝝏𝒙𝟐 , 𝝉𝒙𝒚= 𝝏𝟐𝝓
𝝏𝒙 𝝏𝒚

Substituting the above expressions into the compatibility equation

𝝏𝟒𝝓
𝝏𝒙𝟒 +2 𝝏𝟒𝝓

𝝏𝒙𝟐𝝏𝒚𝟐 +𝝏𝟒𝝓
𝝏𝒚𝟒 =0

Or 𝜵𝟒𝝓=0

𝜵𝟐𝜵𝟐𝝓=0 (Biharmonic Equation)

Where

𝜵𝟒= 𝜵𝟐𝜵𝟐 = ( 𝝏𝟐

𝝏𝒙𝟐 + 𝝏𝟐

𝝏𝒚𝟐)²



For a more general case of a body forces and when the body force components X and Y are given by

X= - 𝝏𝑽
𝛛𝒙

, Y= - 𝝏𝑽
𝛛𝒚

in which V is the potential function. The equilibrium equations become

𝝏
𝛛𝒙

(𝝈𝒙 - V) +
𝝏𝝉𝒙𝒚

𝛛𝒚
=0 , 𝝏

𝛛𝒚
(𝝈𝒚 - V) +

𝝏𝝉𝒙𝒚

𝛛𝒙
=0

These equations can be satisfied by taking

𝝈𝒙= 𝝏𝟐𝝓
𝝏𝒚𝟐 +V , 𝝈𝒚= 𝝏𝟐𝝓

𝝏𝒙𝟐 +V , 𝝉𝒙𝒚= - 𝝏𝟐𝝓
𝝏𝒙 𝝏𝒚

Substituting into the compatibility equation for plane stress distribution

∴ 𝝏𝟒𝝓
𝝏𝒙𝟒 +2 𝝏𝟒𝝓

𝝏𝒙𝟐𝝏𝒚𝟐 +𝝏𝟒𝝓
𝝏𝒚𝟒 = - (1- 𝒗) (𝝏𝟐𝑽

𝝏𝒙𝟐 + 𝝏𝟐𝑽
𝝏𝒚𝟐)

Or 𝜵𝟒𝝓= - (1- 𝒗) 𝜵𝟐V



An analogous equation can be obtained for the case of plane strain.

Note: When the body force is simply the weight, the potential V is (p.g.y).



Example:

Show that the given function gives the stresses correctly on all boundaries except at the end x=ℓ

𝝓 = 𝒑
𝟒𝟎𝒉𝟑 (- 10 𝒉𝟑 𝒙𝟐 +30 𝒉𝟐. ℓ. x .y – 15 𝒉𝟐 𝒙𝟐 .y + 5 ℓ𝟐 . 𝒚𝟑 +2 𝒉𝟐 .𝒚𝟑 - 10 ℓ. x . 𝒚𝟑+ 5 𝒙𝟐 𝒚𝟑- 𝒚𝟓 )

solution:

Check first that the given 𝝓 satisfies 𝜵𝟒𝝓=0

𝝏𝝓
𝛛𝒙

= 𝒑
𝟒𝟎𝒉𝟑 (- 20 𝒉𝟑. x + 30 𝒉𝟐. ℓ. y- 30 𝒉𝟐. X. y -10 ℓ. 𝒚𝟑+ 10 x. 𝒚𝟑)

𝝏𝟐𝝓
𝛛𝒙𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (-20 𝒉𝟑- 30 𝒉𝟐. y +10 𝒚𝟑)

𝝏𝟑𝝓
𝛛𝒙𝟑 =0 , 𝝏𝟒𝝓

𝛛𝒙𝟒 =0



𝝏𝝓
𝛛𝒚

= 𝒑
𝟒𝟎𝒉𝟑 (30 𝒉𝟐. ℓ. x – 15 𝒉𝟐 𝒙𝟐 + 15 ℓ𝟐 . 𝒚𝟐 +6 𝒉𝟐 .𝒚𝟐 - 30 ℓ. x . 𝒚𝟐 + 15 𝒙𝟐 𝒚𝟐 -5 𝒚𝟒)

𝝏𝟐𝝓
𝛛𝒚𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (30 ℓ𝟐. y +12 𝒉𝟐.𝒚 - 60 ℓ. x . y+ 30 𝒙𝟐. y-20 𝒚𝟑)

𝝏𝟑𝝓
𝛛𝒚𝟑 = 𝒑

𝟒𝟎𝒉𝟑 (30 ℓ𝟐 +12 𝒉𝟐 - 60 ℓ. x + 30 𝒙𝟐-60 𝒚𝟐)

𝝏𝟒𝝓
𝛛𝒚𝟒 = 𝒑

𝟒𝟎𝒉𝟑 (-120y) = - 𝟑𝒑.𝒚
𝒉𝟑

𝝏
𝛛𝒚

𝝏𝟐𝝓
𝛛𝒙𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (- 30 𝒉𝟐 + 30 𝒚𝟐)

𝝏𝟐

𝛛𝒚𝟐
𝝏𝟐𝝓
𝛛𝒙𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (60 y) = 𝟑
𝟐

𝒑.𝒚
𝒉𝟑

𝜵𝟒𝝓 = 𝝏𝟒𝝓
𝝏𝒙𝟒 +2 𝝏𝟒𝝓

𝝏𝒙𝟐𝝏𝒚𝟐 +𝝏𝟒𝝓
𝝏𝒚𝟒

= 0 + 2x 𝟑
𝟐

𝒑.𝒚
𝒉𝟑 - 𝟑𝒑.𝒚

𝒉𝟑 =0



∴ biharmonic equation is satisfied.

Thus 𝝓 is a stress function.

To find the stresses 𝝈𝒙 , 𝝈𝒚 and 𝝉𝒙𝒚 (here the body forces, or the weight of the cantilever is neglected):

𝝈𝒙 = 𝝏𝟐𝝓
𝛛𝒚𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (30 ℓ𝟐. y +12 𝒉𝟐.𝒚 - 60 ℓ. x . y+ 30 𝒙𝟐. y-20 𝒚𝟑)

𝝈𝒚 = 𝝏𝟐𝝓
𝛛𝒙𝟐 = 𝒑

𝟒𝟎𝒉𝟑 (-20 𝒉𝟑- 30 𝒉𝟐. y +10 𝒚𝟑)

𝝉𝒙𝒚 = - 𝝏𝟐𝝓
𝝏𝒙 𝝏𝒚 

= - 𝒑
𝟒𝟎𝒉𝟑 ( 30 𝒉𝟐. ℓ – 30 𝒉𝟐.x – 30 ℓ. 𝒚𝟐 +30 x. 𝒚𝟐 )



The boundary conditions which must be satisfied are:

1 𝝈𝒚 𝒚  𝒉
= -p (for all x)

2 𝝈𝒚 𝒚 𝒉
= 0 (for all x)

3 𝝉𝒙𝒚 𝒚 𝒉
= 0 (for all x)

4 𝝉𝒙𝒚 𝒚 𝒉
= 0 (for all x)

5 𝝈𝒙 𝒙 ℓ = 0 (for all y)

6 𝝉𝒙𝒚 𝒙 ℓ = 0 (for all y)



For checking

1 𝝈𝒚 𝒚  𝒉
= 𝒑

𝟒𝟎𝒉𝟑 (-20 𝒉𝟑- 30 𝒉𝟑+10 𝒉𝟑) = - p ok

2 𝝈𝒚 𝒚 𝒉
= 𝒑

𝟒𝟎𝒉𝟑 (-20 𝒉𝟑 30 𝒉𝟑 10 𝒉𝟑)= 0 ok

3 𝝉𝒙𝒚 𝒚 𝒉
= - 𝒑

𝟒𝟎𝒉𝟑 ( 30 𝒉𝟐. ℓ – 30 𝒉𝟐.x – 30 ℓ. 𝒉𝟐 +30 x. 𝒉𝟐 ) = 0 ok

4 𝝉𝒙𝒚 𝒚 𝒉
= - 𝒑

𝟒𝟎𝒉𝟑 ( 30 𝒉𝟐. ℓ – 30 𝒉𝟐.x – 30 ℓ. 𝒉𝟐 +30 x. 𝒉𝟐 ) = 0 ok

5 𝝈𝒙 𝒙 ℓ = 𝒑
𝟒𝟎𝒉𝟑 (30 ℓ𝟐. y +12 𝒉𝟐.𝒚 - 60 ℓ𝟐. y+ 30 ℓ𝟐. y-20 𝒚𝟑) = p {

𝟑
𝟏𝟎

𝒚
𝒉

- 𝟏 
𝟐

( 𝒚
𝒉

)³ 𝟎        𝐍𝐨𝐭 𝐨𝐤 

6 𝝉𝒙𝒚 𝒙 ℓ = - 𝒑
𝟒𝟎𝒉𝟑 ( 30 𝒉𝟐. ℓ – 30 𝒉𝟐. ℓ – 30 ℓ. 𝒚𝟐 +30 ℓ. 𝒚𝟐 ) =0 ok

Thus all boundary conditions are satisfied except for the distribution of 𝝈𝒙 at the free end x= ℓ. A check must be mode
that this disturbance in 𝝈𝒙 at the free edge is localized.



The normal force at the free end is

𝑵𝒙 𝒙 ℓ = 𝝈𝒙 𝒙 ℓ
𝒉

𝒉
. (1. 𝐝𝒚)

p {
𝟑

𝟏𝟎
 𝒚

𝒉
 − 𝟏 

𝟐
( 𝒚

𝒉
 )³

𝒉

𝒉
. 𝐝𝒚 =0 ok

The moment force at the free end is

𝒎 𝒙 ℓ = 𝒚. 𝝈𝒙 𝒙 ℓ
𝒉

𝒉
. (1. 𝐝𝒚)

∴ 𝒎 𝒙 ℓ = 𝒚. 𝝈𝒙 𝒙 ℓ
𝒉

𝒉
. (1. 𝐝𝒚)

= p 𝟑
𝟏𝟎

 𝒚𝟐

𝒉
 − 𝟏 

𝟐
( 𝒚𝟒

𝒉𝟑  )
𝒉

𝒉
. 𝐝𝒚 =0 ok

Thus the disturbance is localized. To show the distribution of stresses at the section at distance x= ℓ
𝟐

 from the fixed 
edge 



𝝈𝒙
𝒙 ℓ

𝟐

= 𝒑
𝟒𝟎𝒉𝟑 (12 𝒉𝟐. y +7.5 ℓ𝟐.𝒚 -20 𝒚𝟑)

𝝈𝒚
𝒙 ℓ

𝟐

= 𝒑
𝟒𝟎𝒉𝟑 (- 20 𝒉𝟑 -30 𝒉𝟐.𝒚 𝟏0 𝒚𝟑)

𝝉𝒙𝒚
𝒙 ℓ

𝟐

= - 𝒑
𝟒𝟎𝒉𝟑 (15 𝒉𝟐.ℓ 𝟏𝟓 ℓ. 𝒚𝟐)

To draw the distribution of 𝝈𝒙
𝒙 ℓ

𝟐

assuming h=1 and ℓ=3 units

y 𝝈𝒙

0 0

𝒉
𝟖

0.244 p

𝒉
𝟒

0.490 p

𝒉
𝟐

0.934 p

𝟑𝒉
𝟒

1.283 p

h 1.492 p



From the simple bending theory ( Euler – Bernoulli theory )

𝝈𝒙 = 𝑴
𝑰

.y

The B.M at a section at x from the fixed end is

M = 𝑷
𝟐

(ℓ –x)²

∴ 𝝈𝒙 =
𝑷
𝟐 (ℓ –x)²

𝟏
𝟏𝟐 (2h)³ y = 𝟑𝑷

𝟒𝒉³
(ℓ –x)² .y

At x= ℓ
𝟐

, 𝝈𝒙
𝒙 ℓ

𝟐

= 𝟑
𝟏𝟔

𝑷ℓ𝟐

𝒉³
.y

At y=h , 𝝈𝒙= 1.688 p ( h=1 unit , ℓ = 3 units)



To draw the 𝝈𝒚 at x= ℓ
𝟐

y 𝝈𝒚

- h 0

- 𝟑𝒉
𝟒

-0.043 p

- 𝒉
𝟐

- 0.156 p

- 𝒉
𝟒

- 0.316 p

0 - 0.5 p

𝒉
𝟒

- 0.684 p

𝒉
𝟐

- 0.844 p

𝟑𝒉
𝟒

- 0.957 p

h - p



To draw the 𝝉𝒙𝒚 at x= ℓ
𝟐

𝝉𝒙𝒚
𝒙 ℓ

𝟐

= - 𝒑
𝟒𝟎𝒉𝟑 (15 𝒉𝟐.ℓ 𝟏𝟓 ℓ. 𝒚𝟐) = 0.357 𝒑ℓ

𝒉𝟑 . 𝒚𝟐 - 0.375 𝒑ℓ
𝒉

From the simple theory 𝝉𝒙𝒚 = 𝑽.𝑸
𝒃.𝑰

The shearing force at a distance x from the fixed end is

V = - p (ℓ –x)

∴ 𝝉𝒙𝒚 = − p (ℓ –x) 
𝟏 ∗ ℓ

𝟏𝟐 𝟐𝒉 ³
[ (h – y) *1] * (h + y

𝟐
) = - 𝟑

𝟒
𝒑

𝒉𝟑 (ℓ –x) (𝒉𝟐- 𝒚𝟐)



at x= ℓ
𝟐

, 𝝉𝒙𝒚= - 𝟑
𝟖

𝒑ℓ
𝒉𝟑 (𝒉𝟐- 𝒚𝟐)

= 0.375 𝒑ℓ
𝒉𝟑 𝒚𝟐 - 0.375 𝒑ℓ

𝒉

This is the same expression obtained from the exact solution

To find the displacements

𝝐𝒙= 𝟏
𝑬

(𝝈𝒙 - 𝒗 𝝈𝒚)

= 𝟏
𝑬

𝒑
𝟒𝟎𝒉𝟑 {30 ℓ𝟐. y +12 𝒉𝟐.𝒚 - 60 ℓ. x . y+ 30 𝒙𝟐. y-20 𝒚𝟑 - 𝒗 (-20 𝒉𝟑- 30 𝒉𝟐. y +10 𝒚𝟑

𝝐𝒚= 𝟏
𝑬

(𝝈𝒚 - 𝒗 𝝈𝒙)

= 𝟏
𝑬

𝒑
𝟒𝟎𝒉𝟑 {-20 𝒉𝟑- 30 𝒉𝟐. y +10 𝒚𝟑 - 𝒗 (30 ℓ𝟐. y +12 𝒉𝟐.𝒚 - 60 ℓ. x . y+ 30 𝒙𝟐. y-20 𝒚𝟑 )}



𝜸𝒙𝒚= 𝟏
𝑮

𝝉𝒙𝒚 = 𝟐 𝟏 𝒗
𝑬

{- 𝒑
𝟒𝟎𝒉𝟑 ( 30 𝒉𝟐. ℓ – 30 𝒉𝟐.x – 30 ℓ. 𝒚𝟐 +30 x. 𝒚𝟐 )}

Let m= 𝟏
𝑬

𝒑
𝟒𝟎𝒉𝟑

∴ 𝝐𝒙= 𝝏𝒖
𝛛𝒙

= m { 30 ℓ𝟐 .y + (12+30 𝒗) 𝒉𝟐.y -60 ℓ. x. y 30 𝒙𝟐. y – (20 +10 𝒗) 𝒚𝟑 + 20 𝒗. 𝒉𝟑 }

Integrating

𝟏
𝒎

𝒖= 30 ℓ𝟐.x .y + (12+30 𝒗) 𝒉𝟐.y .x -30 ℓ. x². y 10 𝒙𝟑. y – (20 +10 𝒗) 𝒚𝟑.x + 20 𝒗. 𝒉𝟑 .x +f(y)

𝝐𝒚= 𝝏𝒗
𝛛𝒚

= m { - 20 𝒉𝟑 - (30+12 𝒗) 𝒉𝟐.y + (10 +20 𝒗) 𝒚𝟑 - 30 𝒗 . ℓ𝟐 .y + 60 𝒗 .ℓ. x. y – 30 𝒗 . 𝒙𝟐. y }

Integrating

𝟏
𝒎

v= - 20 𝒉𝟑 .y - (15+6 𝒗) 𝒉𝟐.y² + (𝟓
𝟐

+5 𝒗) 𝒚𝟒 - 15 𝒗 . ℓ𝟐 . y² + 30 𝒗 .ℓ. x. y² – 15 𝒗 . 𝒙𝟐. y² g x



𝜸𝒙𝒚= 𝝏𝒖
𝛛𝒚

+ 𝝏𝒗
𝛛𝒙

=m {30 ℓ𝟐.x + (12+30 𝒗) 𝒉𝟐 .x -30 ℓ. x² 10 𝒙𝟑 – (60 +30 𝒗) 𝒚𝟐.x + 𝒅𝒇
𝒅𝒚

} + 𝒎 {30 𝒗 .ℓ. y² – 30 𝒗 .x. y² 𝒅𝒈
𝒅𝒙

}

∴  𝟏
𝒎

𝜸𝒙𝒚= 30 ℓ𝟐.x + 12 𝒉𝟐 .x +30 𝒗 . 𝒉𝟐 .x -30 ℓ. x² 10 𝒙𝟑 – 60 𝒚𝟐.x -30 𝒗. 𝒚𝟐.x + 𝒅𝒇
𝒅𝒚

+ 30 𝒗 .ℓ. y² – 30 𝒗 .x. y² 𝒅𝒈
𝒅𝒙

…..(1)

But

𝟏
𝒎

𝜸𝒙𝒚= (2+2 𝒗) {-30 ℓ. h² 30 x . h² 3 ℓ. 𝒚𝟐 -30 x. 𝒚𝟐 } ………….(2)

Equating (1) and (2)

∴ {(30 ℓ𝟐- 48 h² - 30 𝒗. h² x - 30 ℓ. x² 10 𝒙𝟑 + 𝒅𝒈
𝒅𝒙

} + {𝒅𝒇
𝒅𝒚

- (60 ℓ 30 𝒗 .ℓ 𝒚𝟐}= -60 𝒉𝟐. ℓ – 60 𝒗 𝒉𝟐. ℓ

∴ (30 ℓ𝟐- 48 h² - 30 𝒗. h² x - 30 ℓ. x² 10 𝒙𝟑 + 𝒅𝒈
𝒅𝒙

=a

And

𝒅𝒇
𝒅𝒚

- (60 ℓ 30 𝒗 .ℓ 𝒚𝟐 =c



Where a+c = - 60 ℓ. h² - 60 𝒗. ℓ. h²

Integrating

∴ g(x) =ax – (15 ℓ𝟐- 24 h² - 15 𝒗. h² x² 10 ℓ. x³- 𝟓
𝟐

𝒙𝟒 + b

And

F(y) = c.y + (20 ℓ 10 𝒗. ℓ𝟐 ) 𝒚𝟑 +d

∴ u = m{ 30 ℓ𝟐.x .y + (12+30 𝒗) 𝒉𝟐.y .x -30 ℓ. x². y 10 𝒙𝟑. y – (20 +10 𝒗) 𝒚𝟑.x + 20 𝒗. 𝒉𝟑 .x +c.y + (20 ℓ 10 𝒗. ℓ𝟐 ) 𝒚𝟑

+d}

∴ v= m{- 20 𝒉𝟑 .y - (15+6 𝒗) 𝒉𝟐.y² + (𝟓
𝟐

+5 𝒗) 𝒚𝟒 - 15 𝒗 . ℓ𝟐 . y² + 30 𝒗 .ℓ. x. y² – 15 𝒗 . 𝒙𝟐. y² ax – (15 ℓ𝟐- 24 h² - 15 𝒗.

h² x² 10 ℓ. x³- 𝟓
𝟐

𝒙𝟒 + b}



Boundary conditions:

u=0 at x=0 and y=0

v=0 at x=0 and y=0

∴ d=0 & b=0

𝝏𝒖
𝛛𝒚

= 0 at x=0 and y=0

𝝏𝒗
𝛛𝒙

=0 at x=0 and y=0

From 𝝏𝒖
𝛛𝒚

= 0 ∴ c=0 ∴ a= - 60 ℓ. h² - 60 𝒗. ℓ. h² ………………. 3

From 𝝏𝒗
𝛛𝒙

= 0 ∴ a=0 ∴ c= - 60 ℓ. h² - 60 𝒗. ℓ. h² ………………. 4



Using the first solution (3)

V = 𝒑
𝟒𝟎 𝑬 𝒉𝟑 {- 20 𝒉𝟑 .y - (15 𝒉𝟐 +6 𝒗 𝒉𝟐+ 15 𝒗 . ℓ𝟐 ) y² + (𝟓

𝟐
+5 𝒗) 𝒚𝟒 + 30 𝒗 .ℓ. x. y² – 15 𝒗 . 𝒙𝟐. y² +ax – (15 ℓ𝟐- 24 h² - 15 𝒗.

h²) x² + 10 ℓ. x³- 𝟓
𝟐

𝒙𝟒 + ( - 60 𝒉𝟐. ℓ – 60 𝒗 .𝒉𝟐. ℓ ) x}

∴ 𝑣 𝟎
       𝑥 1

= -  𝟕.𝟓 𝒑 ℓ𝟒

𝟒𝟎 𝑬 𝒉𝟑 - 𝒑
𝟒𝟎 𝑬 𝒉𝟑 (36 𝒉𝟐. ℓ𝟐 + 4𝟓 𝒗 .𝒉𝟐. ℓ𝟐)

For simple theory:

Deflection at free end = 𝒘.ℓ𝟐

𝟖 𝑬 𝑰
=  𝟕.𝟓 𝒑 ℓ𝟒

𝟒𝟎 𝑬 𝒉𝟑



Example:

For the given cantilever show that

𝝓 = A . x. y + B . x. 𝒚𝟑

is the proper stress function. Determine the constants A and B so that the

Shear stress is zero on the top and bottom faces while the resultant vertical

Force on the free surface is P

solution:

by direct substitution

𝜵𝟒𝝓 =( 𝝏𝟒

𝝏𝒙𝟒 +2 𝝏𝟒

𝝏𝒙𝟐𝝏𝒚𝟐 + 𝝏𝟒

𝝏𝒚𝟒 ) (A . x. y + B . x. 𝒚𝟑 ) =0



Thus the given 𝝓 is a proper stress function. Next is to prove that this function is for the given problem.

The stresses are:

𝝈𝒙 = 𝝏𝟐𝝓
𝛛𝒚𝟐 = 6 B . x. y

𝝈𝒚 = 𝝏𝟐𝝓
𝛛𝒙𝟐 = 𝟎

𝝉𝒙𝒚 = - 𝝏𝟐𝝓
𝝏𝒙 𝝏𝒚 

= - 𝑨 -3 B . 𝒚𝟐

The constants A and B must be determined.

The boundary conditions are:

1 𝝉𝒙𝒚 𝒚  𝒉
= 0

∴ -A -3B 𝒉𝟐 =0

∴ A +3B 𝒉𝟐 =0 ………….. (1)



2) On any x section 𝝉𝒙𝒚  ∗ 𝟏 ∗ 𝐝𝒚 𝑷
𝒉

𝒉

∴ − 𝑨 −3 B . 𝒚𝟐 ) ∗ 𝟏 ∗ 𝐝𝒚 𝑷
𝒉

𝒉

∴ 2Ah + 2B 𝒚𝟑 =P ……………………………….. (2)

Solving Eqs. (1) and (2)

∴ A= 𝟑𝒑
𝟒𝒉

, B = - 𝒑
𝟒𝒉𝟑

∴ 𝝈𝒙 = - 𝟑
𝟐

𝒑
𝒉𝟑 x.y

𝝈𝒚 = 0

𝝉𝒙𝒚 = 𝟑𝒑
𝟒𝒉

(1 - 𝒚𝟐

𝒉𝟐 )



The other boundary conditions at any x-section:

1. 𝝈𝒙 ∗ 𝟏 ∗ 𝐝𝒚 𝟎
𝒉

𝒉

∴ − 𝟑
𝟐

 𝒑
𝒉𝟑  x.y . 𝐝𝒚

𝒉

𝒉
− 𝟑

𝟐
 𝒑

𝒉𝟑  x 𝒚𝟐

𝟐 𝒉

𝒉
=0 ok

2. 𝒚 𝝈𝒙 ∗ 𝟏 ∗ 𝐝𝒚 𝑴
𝒉

𝒉

Where M= -P .x

∴ − 𝟑
𝟐

 𝒑
𝒉𝟑  x.y  𝒚 . 𝐝𝒚 −P .x 

𝒉

𝒉
ok



2- Dimensional Problems in Polar Coordinate

Equations of Equilibrium

Consider the state of stress on an infinitesimal element a b c d of unit thickness



The stresses on the faces (ab and bc) of the element are:

𝝈𝒓 - the normal stress component in the radial direction

𝝈𝜽 - the normal stress component in the circumferential direction

𝝉𝒓𝜽 = 𝝉𝜽𝒓 - the shearing stress components

The r and 𝜽 directed body forces are denoted by 𝑭𝒓 and 𝑭𝜽

Transfer of forces on sides the 𝒅𝒓 to

the center of the element



Equilibrium in radial direction:

(𝝈𝒓 + 𝝏𝝈𝒓
𝝏𝒓

𝒅𝒓 ) ( r + 𝒅𝒓 ) 𝒅𝜽 * 1- 𝝈𝒓 .r. 𝒅𝜽 * 1- 𝝈𝜽. 𝒅𝒓 * 1 . sin 𝒅𝜽
𝟐

- (𝝈𝜽 + 𝝏𝝈𝜽
𝝏𝜽

𝒅𝜽 ) . 𝒅𝒓 * 1 . sin 𝒅𝜽
𝟐

+ (𝝉𝒓𝜽 + 𝝏𝝉𝒓𝜽
𝝏𝜽

𝒅𝜽 ) 𝒅𝒓 * 1 cos
𝒅𝜽
𝟐

- 𝝉𝒓𝜽 . 𝒅𝒓 * 1 . cos 𝒅𝜽
𝟐

+ 𝑭𝒓 .r. 𝒅𝜽 . 𝒅𝒓 .1 =0

As 𝒅𝜽 is small,

sin 𝒅𝜽
𝟐

= 𝒅𝜽
𝟐

and cos 𝒅𝜽
𝟐

=1

Also, dropping terms containing higher order infinitesimals (𝒅𝒓
𝟐 , 𝒅𝜽

𝟐 )

∴ 𝝏𝝈𝒓
𝝏𝒓

+ 𝟏
𝒓

𝝏𝝉𝒓𝜽
𝝏𝜽

- 𝝈𝒓 𝝈𝜽
𝒓

+ 𝑭𝒓 =0 ………………………. (1)

Equilibrium in 𝜽 – direction:

(𝝈𝜽 + 𝝏𝝈𝜽
𝝏𝜽

𝒅𝜽 ) 𝒅𝒓 * 1 . cos 𝒅𝜽
𝟐

- 𝝈𝜽 . 𝒅𝒓 * 1 . cos 𝒅𝜽
𝟐

+ (𝝉𝒓𝜽 + 𝝏𝝉𝒓𝜽
𝝏𝒓

𝒅𝒓 ) ( r + 𝒅𝒓 ) 𝒅𝜽 * 1 - 𝝉𝒓𝜽 . r. 𝒅𝜽.1 + 𝝉𝒓𝜽 + 𝝏𝝉𝒓𝜽
𝝏𝜽

𝒅𝜽). 𝒅𝒓 *1

sin 𝒅𝜽
𝟐

+ 𝝉𝒓𝜽 . 𝒅𝒓 *1. sin 𝒅𝜽
𝟐

+ 𝑭𝜽 . 𝒅𝒓 .r. 𝒅𝜽 .1

∴ 𝟏
𝒓

 𝝏𝝈𝜽
𝝏𝜽

+ 𝝏𝝉𝒓𝜽
𝝏𝒓

+ 2 𝝉𝒓𝜽
𝒓

+ 𝑭𝜽 =0 …………………….......(2)



Strain – Displacement Relations

The general deformation experienced by an element abcd may be regarded as composed of :

A change in length of the sides, as in Figs. (1) and (2).

Rotation of the sides, as in Figs. (3) and (4).

The r and 𝜽 displacements are denoted

by u and v, respectively.



Referring to Fig.(1), a u displacement od side ab results in both radial and tangential strain. The radial strain 𝝐𝒓 is

𝝐𝒓 = 𝒂 𝒅  𝒂𝒅
𝒂𝒅 

=
𝒅𝒓 𝒖 𝒖𝝏𝒖

𝝏𝒓.𝒅𝒓 𝒅𝒓

𝒅𝒓
=

𝝏𝒖
𝝏𝒓 𝒅𝒓

𝒅𝒓
= 𝝏𝒖

𝝏𝒓
………….(1)

The tangential strain is

𝝐𝜽 𝒖 = 𝒓 𝒖 𝒅𝜽 𝒓.𝒅𝜽
𝒓.𝒅𝜽

= 𝒖
𝒓

……………………………...(2)

A v displacement produces a tangential strain (Fig.2)

𝝐𝜽 𝒗=
𝒓.𝒅𝜽 𝒗 𝒗 𝝏𝒗

𝝏𝜽𝒅𝜽 𝒓.𝒅𝜽

𝒓.𝒅𝜽
=

𝝏𝒗
𝝏𝜽𝒅𝜽

𝒓.𝒅𝜽
= 𝟏

𝒓
𝝏𝒗
𝝏𝜽

……………(3)

The resultant tangential strain is

𝝐𝜽= 𝝐𝜽 𝒖 + 𝝐𝜽 𝒗



∴ 𝝐𝜽= 𝝏𝒖
𝝏𝒓

+ 𝟏
𝒓

𝝏𝒗
𝝏𝜽

………………….. (4)

In Fig.(3), and due to a u displacement

𝜸𝒓𝜽 𝒖 =
𝝏𝒖
𝝏𝜽𝒅𝜽

𝒓.𝒅𝜽
= 𝟏

𝒓
𝝏𝒖
𝝏𝜽

……………(5)

The rotation od side bc associated with a v displacement alone (Fig.4) is

𝜸𝒓𝜽 𝒗 =
𝝏𝒗
𝝏𝒓 𝒅𝒓

𝒅𝒓
- 𝒗

𝒓
= 𝝏𝒗

𝝏𝒓
- 𝒗

𝒓
………...(6)

The total shearing strain is

𝜸𝒓𝜽 = 𝜸𝒓𝜽 𝒖 + 𝜸𝒓𝜽 𝒗

= 𝝏𝒗
𝝏𝒓

+ 𝟏
𝒓

𝝏𝒖
𝝏𝜽

- 𝒗
𝒓

………………(7)



Stress – Strain Relationship

In the case of plane stress:

𝝐𝒓=
𝟏
𝑬
(𝝈𝒓 - 𝒗 𝝈 )

𝝐 = 𝟏
𝑬
(𝝈  - 𝒗 𝝈𝒓 ) ………………………….. (1)

𝜸𝒓 = 𝟏
𝑮

𝝉𝒓

For plane strain case:

𝝐𝒓=
𝟏 𝒗

𝑬
[(𝟏 𝒗) 𝝈𝒓 - 𝒗 𝝈 ]

𝝐 = 𝟏 𝒗
𝑬

[(𝟏 𝒗) 𝝈 - 𝒗 𝝈𝒓]

𝜸𝒓 = 𝟏
𝑮

𝝉𝒓



Compatibility Equation

By eliminating u and v from the expressions of strains, the compatibility equation is

𝝏𝟐𝝐
𝛛𝒓𝟐

𝟏
𝒓𝟐

𝝏𝟐𝝐𝒓
𝛛 𝟐

𝟐
𝒓

𝛛𝝐
𝛛𝒓

 - 𝟏
𝒓

𝛛𝝐𝒓
𝛛𝒓

𝟏
𝒓

𝝏𝟐𝜸𝒓
𝛛𝐫 𝛛

+ 𝟏
𝒓𝟐

𝛛𝜸𝒓
𝛛

Or

𝟏
𝒓𝟐

𝛛
𝛛
(r 𝛛𝜸𝒓

𝛛
) = 𝟏

𝒓𝟐
𝛛

𝛛𝒓
(𝒓𝟐 𝛛𝝐

𝛛𝒓
) + ( 𝟏

𝒓𝟐
𝝏𝟐

𝛛 𝟐 -
𝟏
𝒓

𝛛
𝛛𝒓
) 𝝐𝒓

Solution by Stress Function

In the absence of body forces, the equations of equilibrium are satisfied by stress function ϕ r,θ for which

𝝈𝒓=
𝟏
𝒓

𝝏𝝓
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐𝝓
𝝏 𝟐

𝝈 = 𝝏𝟐𝝓
𝝏𝒓𝟐

𝝉𝒓 = 𝟏
𝒓𝟐

𝝏𝝓
𝝏

- 𝟏
𝒓

𝝏𝟐𝝓
𝛛𝐫 𝛛

= - 𝛛
𝛛𝒓
(𝟏

𝒓
𝝏𝝓
𝝏
)



The compatibility equation can be expressed in the alternative form

( 𝝏𝟐

𝝏𝒓𝟐 +
𝟏
𝒓

𝝏
𝝏𝒓
+ 𝟏

𝒓𝟐
𝝏𝟐

𝝏 𝟐 ) (
𝝏𝟐

𝝏𝒓𝟐 +
𝟏
𝒓

𝝏
𝝏𝒓
+ 𝟏

𝒓𝟐
𝝏𝟐

𝝏 𝟐 ) 𝝓 =0

Or

𝜵𝟒𝝓=0

Where in polar coordinates, the Laplacian operator is

𝜵𝟐 = 𝝏𝟐

𝝏𝒓𝟐 +
𝟏
𝒓

𝝏
𝝏𝒓
+ 𝟏

𝒓𝟐
𝝏𝟐

𝝏 𝟐

If 𝝓 and the components of stress are independent of the variable θ (axi – symmetric problems), then

𝝈𝒓=
𝟏
𝒓

𝝏𝝓
𝝏𝒓

𝝈 = 𝝏𝟐𝝓
𝝏𝒓𝟐

𝝉𝒓 =0



The compatibility equation can be expressed in the alternative form

( 𝒅𝟐

𝒅𝒓𝟐 +
𝟏
𝒓

𝒅
𝒅𝒓
) (𝒅

𝟐𝝓
𝒅𝒓𝟐 +

𝟏
𝒓

𝒅𝝓
𝒅𝒓

)=0

Or

𝒅𝟒𝝓
𝒅𝒓𝟒 +

𝟐
𝒓

𝒅𝟑𝝓
𝒅𝒓𝟑 -

𝟏
𝒓𝟐

𝒅𝟐𝝓
𝒅𝒓𝟐 +

𝟏
𝒓𝟑

𝒅𝝓
𝒅𝒓

=0 ……………….. (1)

To solve Eq.(1), introduce a new variable t such that r=𝐞𝒕

∴ 𝒅𝒓
𝒅𝒕
= 𝐞𝒕 and 𝒅𝒕

𝒅𝒓
= 𝐞 𝒕

Also

𝒅𝝓 𝒓
𝒅𝒓

= 𝒅𝝓 𝒓
𝒅𝒕

. 𝒅𝒕
𝒅𝒓
= 𝒅𝝓 𝒕

𝒅𝒕
𝐞 𝒕 ,

𝒅𝟐𝝓 𝒓
𝒅𝒓𝟐 = 𝒅

𝒅𝒓
[𝒅𝝓 𝒓

𝒅𝒓
]= 𝒅

𝒅𝒕
[𝒅𝝓 𝒓

𝒅𝒓
] 𝒅𝒕

𝒅𝒓



= 𝒅
𝒅𝒕
[𝒅𝝓 𝒕

𝒅𝒕
𝐞 𝒕 ] . 𝐞 𝒕

= [𝒅
𝟐𝝓 𝒕
𝒅𝒕𝟐 - 𝒅𝝓 𝒕

𝒅𝒕
] . 𝐞 𝟐𝒕

𝒅𝟑𝝓 𝒓
𝒅𝒓𝟑 = 𝒅

𝒅𝒕
[𝒅

𝟐𝝓 𝒓
𝒅𝒓𝟐 ] 𝒅𝒕

𝒅𝒓

= 𝐞 𝒕 𝒅
𝒅𝒕
[{𝒅𝟐𝝓 𝒕

𝒅𝒕𝟐 - 𝒅𝝓 𝒕
𝒅𝒕

} 𝐞 𝟐𝒕 ]

= [𝒅
𝟑𝝓 𝒕
𝒅𝒕𝟑 -3 𝒅𝟐𝝓 𝒕

𝒅𝒕𝟐 +2 𝒅𝝓 𝒕
𝒅𝒕

] 𝐞 𝟑𝒕

𝒅𝟒𝝓 𝒓
𝒅𝒓𝟒 = 𝒅

𝒅𝒕
[𝒅

𝟑𝝓 𝒓
𝒅𝒓𝟑 ] 𝒅𝒕

𝒅𝒓

= [𝒅
𝟒𝝓 𝒕
𝒅𝒕𝟒 - 6 𝒅𝟑𝝓 𝒕

𝒅𝒕𝟑 + 11 𝒅𝟐𝝓 𝒕
𝒅𝒕𝟐 - 6 𝒅𝝓 𝒕

𝒅𝒕
] 𝐞 𝟒𝒕

Substituting the above expressions in Eq.(1)



∴ 𝒅𝟒𝝓 𝒕
𝒅𝒕𝟒 - 4 𝒅𝟑𝝓 𝒕

𝒅𝒕𝟑 + 4 𝒅𝟐𝝓 𝒕
𝒅𝒕𝟐 =0 …………..(2)

To integrate Eq.(2) let 𝝓 𝒕 = 𝐞 𝒕 ………..(3)

Substituting Eq.(3) into Eq.(2)

∴ 𝜆𝟒- 4 𝜆𝟑 + 4 𝜆𝟐 =0

or 𝜆𝟐 𝜆 𝟐 𝟐 =0

∴ 𝝀𝟏=0 , 𝝀𝟐=0 , 𝝀𝟑=2 and 𝝀𝟒=2

The general solution of Eq.(2) is

𝝓 𝒕 = a.t + b.t. 𝐞𝟐𝒕 + c. 𝐞𝟐𝒕 +d ………….(4)

Where a,b,c and d are constants .

Since r= 𝐞𝒕 , i.e. , t=ln r , then the general solution of Eq.(1) is



𝝓 𝒓)= A. ln r + B. 𝒓𝟐.ln r + C. 𝒓𝟐.D ……………… (5)

Where A,B,C and D are constants.

𝝈𝒓=
𝟏
𝒓

𝝏𝝓
𝝏𝒓

= 𝑨
𝒓𝟐 + B (1+ 2. ln r)+ 2C

𝝈 = 𝝏𝟐𝝓
𝝏𝒓𝟐 = -

𝑨
𝒓𝟐 + B (3+ 2. ln r)+ 2C …………..(6)

𝝉𝒓 =0



Displacements for Symmetrical Stress Distribution

The Hooke’s law for plane stress is:

𝝐𝒓= 𝝏𝒖
𝝏𝒓

= 𝟏
𝑬

(𝝈𝒓 - 𝒗 𝝈 )

𝝐𝜽= 𝒖
𝒓

+ 𝟏
𝒓

𝝏𝒗
𝝏𝜽

= 𝟏
𝑬

(𝝈  - 𝒗 𝝈𝒓 )

𝜸𝒓 = 𝟏
𝒓

𝝏𝒖
𝝏𝜽

+ 𝝏𝒗
𝝏𝒓

- 𝒗
𝒓

= 𝝉𝒓
𝑮

= 0

Substituting Eqs. (6) in the first of eqs. (7)

𝝏𝒖
𝝏𝒓

= 𝟏
𝑬

[ 𝟏 𝒗  𝑨
𝒓𝟐 + 2 𝟏 𝒗  B.lnr + (1-3 𝒗) B +2(1- 𝒗) C]

After integration

u= 𝟏
𝑬

[ - 𝟏 𝒗  𝑨
𝒓

+ 2(1- 𝒗) B. r. lnr - 𝟏 𝒗  B.r +2(1- 𝒗) C.r + f(θ) ………………….. (8)

In which f(θ) is a function of θ only. The second of Eqs.(7) can be written as



𝝏𝒗
𝝏𝜽

= 𝒓
𝑬

(𝝈  - 𝒗 𝝈𝒓 ) - u

= 𝟒 𝑩.𝒓
𝑬

- f(θ)

After integration

v= 𝟒 𝑩.𝒓.
𝑬

- f(θ) . 𝒅 + 𝒇𝟏 𝒓 ……………….. (9)

Substituting Eqs. (8) and (9) into the third of Eqs. (7)

𝟏
𝒓

𝒅f(θ)
𝒅𝜽

+ 𝒅𝒇𝟏 𝒓
𝒅𝒓

+ 𝟏
𝒓

f(θ) . 𝒅 - 𝒇𝟏 𝒓
𝒓

=0

∴ 𝒅f(θ)
𝒅𝜽

+ f(θ) . 𝒅 = 𝒇𝟏 𝒓 - r 𝒅𝒇𝟏 𝒓
𝒅𝒓

= N= constant

Which yields

𝒅f(θ)
𝒅𝜽

+ f(θ) . 𝒅 =N and …………… (10)

𝒇𝟏 𝒓 - r 𝒅𝒇𝟏 𝒓
𝒅𝒓

=N



Differentiating the first of Eqs. (10) w.r.t. θ

∴ 𝒅𝟐f(θ)
𝒅 𝟐 + f(θ) =0

∴ f(θ) = J. Cosθ + K. Sinθ ……………… (11)

Where J and K are the constants of integration.

Substituting Eq. (11) into the first of Eqs.(10)

∴ J. Sinθ + K. Cosθ + J. Sinθ - K. Cosθ + K =N

Or K=N

∴ f(θ) = J. Cosθ + N. Sinθ ……………… (12)

Differentiating the second of Eqs. (10) w.r.t.r

∴ 𝒅𝒇𝟏 𝒓
𝒅𝒓

- r 𝒅𝟐𝒇𝟏 𝒓
𝒅𝒓𝟐 - 𝒅𝒇𝟏 𝒓

𝒅𝒓
=0

Or 𝒅𝟐𝒇𝟏 𝒓
𝒅𝒓𝟐 =0



∴ 𝒇𝟏 𝒓 = H.r + G ……………. (13)

Where H and G are the constants of integration.

Substituting Eq.(13) into the second of Eqs. (10)

∴ G=N

𝒇𝟏 𝒓 = H.r + N ……………….(14)

Substituting Eqs. (12) and (14) into Eqs. (8) and (9)

∴ u= 𝟏
𝑬

[ - 𝟏 𝒗  𝑨
𝒓

+ 2(1- 𝒗) B. r. lnr - 𝟏 𝒗  B.r +2(1- 𝒗) C.r ]+ J. Cosθ + N. Sinθ

And ……………… (15)

v= 𝟒 𝑩.𝒓.
𝑬

- J. Sinθ + N. Cosθ + H.r

Where A,B,C,N,H, and J are constants to be determined.



Applications

(1) Pure Bending of Curved Bars

Consider a curved bar with constant narrow rectangular cross section and a circular axis bent in the plane of
curvature by two equal and opposite couples M applied at the ends.



The bending moment constant along the length of the bar and the stress distribution is the same in all radial cross
sections.

The solution of the problem can be obtained by using the stress function ϕ(r) given by Eq. (5). The stresses are given
by Eqs. (6)

The boundary conditions are:

1) No normal forces act along the curved boundaries

at r=a and r=b

∴ (𝝈𝒓) 𝒓 𝒂 =0 , (𝝈𝒓) 𝒓 𝒃 =0 ………………….. (16)

2) The normal stresses acting at the straight edge of the bar must yield a zero resultant force

t 𝝈𝒃
𝒂 . 𝐝𝒓 =0 …………………………………..…(17)

2) The normal stresses at the ends must produce a couple M

t 𝒓 . 𝝈𝒃
𝒂 . 𝐝𝒓 = - M ……………………………..(18)



The shearing stresses have been assumed zero throughout the beam, and 𝝉𝒓 =0 is thus satisfied at the boundaries,
where no tangential forces exist. Using the first boundary condition leads to

𝑨
𝒂𝟐 + B (1+ 2. ln a)+ 2C=0

………………. (19)

𝑨
𝒃𝟐 + B (1+ 2. ln b)+ 2C=0

From the second B.C.

𝝈𝜽⋅
𝒃

𝒂 𝐝𝒓 = 𝒅𝟐

𝒅𝒓𝟐

𝒃

𝒂
𝐝𝒓 = 𝒅 𝒅

𝒅𝒓

𝒃

𝒂
 =[𝒅

𝒅𝒓 𝒂
𝒃

= 0 = 0

=[r. 𝝈𝐫⋅ 𝒂
𝒃 = b 𝝈𝒓 𝒓 𝒃 - a 𝝈𝒓 𝒓 𝒂 =0 -0 =0

Using the third B.C. gives



𝝈𝜽⋅
𝒃

𝒂 .r. 𝐝𝒓 = - 𝑴
𝒕

∴ 𝒅𝟐

𝒅𝒓𝟐

𝒃

𝒂
 𝒓. 𝐝𝒓 = - 𝑴

𝒕

∴ 𝒓. 𝒅 𝒅
𝒅𝒓

𝒃

𝒂
  = - 𝑴

𝒕

∴ [r . 𝒅
𝒅𝒓 𝒂

𝒃 - 𝒅
𝒅𝒓

𝒃

𝒂
 𝐝𝒓 = - 𝑴

𝒕

∴ [𝒓𝟐 .𝝈𝐫⋅ 𝒂
𝒃 - [ϕ 𝒂

𝒃 = - 𝑴
𝒕

=0 =0

Since [𝒓𝟐 .𝝈𝐫⋅ 𝒂
𝒃 = 𝒃𝟐 𝝈𝒓 𝒓 𝒃 - 𝒂𝟐 𝝈𝒓 𝒓 𝒂 =0 – 0 =0

∴ [ϕ 𝒂
𝒃 = 𝑴

𝒕



Substituting for ϕ from Eq.(5)

∴ A 𝒍𝒏 𝒃
𝒂

+ B (𝒃𝟐. 𝒍𝒏 𝒃  𝒂𝟐. 𝒍𝒏 𝒂 + C (𝒃𝟐 𝒂𝟐) =M ………………. (20)

Solving Eqs.(19) and (20) for A,B, and C

A= - 𝟒 𝑴
𝒕𝒌

. 𝒂𝟐 . 𝒃𝟐. 𝒍𝒏 𝒃
𝒂

B= - 𝟐 𝑴
𝒕𝒌

(𝒃𝟐 𝒂𝟐)

C=  𝑴
𝒕𝒌

[𝒃𝟐 𝒂𝟐+2(𝒃𝟐. 𝒍𝒏 𝒃  𝒂𝟐. 𝒍𝒏 𝒂 

Where k= 𝒃𝟐 𝒂𝟐 𝟐 - 4. 𝒂𝟐. 𝒃𝟐 𝒍𝒏 𝒃
𝒂

𝟐



The stresses are

𝝈𝒓= - 𝟒 𝑴
𝒕𝒌

[ 𝒂𝟐 .𝒃𝟐

𝒓𝟐 𝒍𝒏 𝒃
𝒂

+ 𝒃𝟐 𝒍𝒏 𝒓
𝒃

+ 𝒂𝟐 𝒍𝒏 𝒂
𝒓

]

𝝈𝜽= - 𝟒 𝑴
𝒕𝒌

[ - 𝒂𝟐 .𝒃𝟐

𝒓𝟐 𝒍𝒏 𝒃
𝒂

+ 𝒃𝟐 𝒍𝒏 𝒓
𝒃

+ 𝒂𝟐 𝒍𝒏 𝒂
𝒓

+ 𝒃𝟐 𝒂𝟐 ]

𝝉𝒓 = 0

To find the neutral axis, put 𝝈𝜽= 0



To compute the values of the three constant N,H and J,it will be assumed that the centroid of the cross section

and also an element of the radius at this point, is rididly fixed.

∴ u v 𝒅𝒗
𝒅𝒓

=0

for r = 𝒓° = 𝒃 𝒂
𝟐

and θ 0

Applying these to Eqs. (15) gives

N =H =0

J = 𝟏
𝑬

[  𝟏 𝒗
𝒓°

A – 2 (1- 𝒗) B . 𝒓°. 𝒍𝒏 𝒓° (1 + 𝒗) B . 𝒓° - 2 ( 1- 𝒗) C. 𝒓° ……………………… (21)

Component v of the elastic displacement is then

v= 𝟒 𝑩.𝒓.
𝑬

- J . sinθ



Applications

2) Thick Cylinder Subjected to Uniformly Distributed Pressures

Consider a thick cylinder of length ℓ, internal radius a, and external radius b. the cylinder is subjected to internal and
external uniformly distributed pressures 𝑷𝒊 and 𝑷° . The bases of the cylinder at z=0 and z= ℓ are assumed to be
completely restrained ; therefore, w=0 and it follows that the problem is a case of plane strain.

Because of symmetry, stresses 𝝈𝒓 and 𝝈 will be independent of θ and the stress 𝝉𝒓 = 0. the stresses will be expressed
by Eqs.(6) , i.e.,

𝝈𝒓=
𝑨
𝒓𝟐 + B (1+ 2 ln r)+ 2C

…………………. (22)

𝝈 = - 𝑨
𝒓𝟐 + B (3+ 2 ln r)+ 2C

Also for symmetry, component u of the displacement

will be independent of θ and component v will be zero



In this case

𝝐𝒓=
𝒅𝒖
𝒅𝒓

, 𝝐 = 𝒖
𝒓

, 𝜸𝒓 =0 ………………. (23)

Hook’s law is given by

𝝐𝒓=
𝟏
𝑬
[ 𝝈𝒓 - 𝒗( 𝝈 +𝝈𝒛 ]

𝝐 =𝟏
𝑬
[𝝈 - 𝒗(𝝈𝒓 +𝝈𝒛 ] …………………….(24)

𝝐𝒛=
𝟏
𝑬
[𝝈𝒛 - 𝒗(𝝈𝒓 +𝝈 ]

Since 𝝐𝒛 =0 , then from the third of Eqs.(24)

∴ 𝝈𝒛 = 𝒗(𝝈𝒓 +𝝈 ………………………………(25)

Substituting Eq.(25) into the first two of Eqs. (24)



∴ 𝝐𝒓=
𝟏
𝑬
[ 𝟏 𝒗𝟐 𝝈𝒓 - 𝒗 (𝟏 𝒗 𝝈 ]

…………………….. (26)

    𝝐 =𝟏
𝑬
[ 𝟏 𝒗𝟐 𝝈  - 𝒗 (𝟏 𝒗 𝝈𝒓]

Using Eqs. (22) , the first of Eqs. (23), and the first of Eqs. (26)

∴ 𝒅𝒖
𝒅𝒓

= 𝟏
𝑬
[ 𝟏 𝒗𝟐 { 𝑨

𝒓𝟐 + B (1+ 2 ln r)+ 2C} - 𝒗 (𝟏 𝒗) {- 𝑨
𝒓𝟐 + B (3+ 2 ln r)+ 2C}] ………… (27)

Combining the second of Eqs.(23) with the second of Eqs.(24) and using Eqs.(22)

u= 𝒓
𝑬
[ 𝟏 𝒗𝟐 {- 𝑨

𝒓𝟐 + B (3+ 2 ln r)+ 2C} - 𝒗 (𝟏 𝒗){ 𝑨
𝒓𝟐 + B (1+ 2 ln r)+ 2C}]

Differentiating w.r.t.r

𝒅𝒖
𝒅𝒓

= 𝟏
𝑬
[ 𝟏 𝒗𝟐 {- 𝑨

𝒓𝟐 + B (3+ 2 ln r)+ 2C} - 𝒗 (𝟏 𝒗){ 𝑨
𝒓𝟐 + B (1+ 2 ln r)+ 2C}]+ 𝒓

𝑬
[ 𝟏 𝒗𝟐 { 𝟐𝑨

𝒓𝟑 + 𝟐𝑩
𝒓
- 𝒗 (𝟏 𝒗)

{- 𝟐𝑨
𝒓𝟑 +

𝟐𝑩
𝒓
}]………………… (28)



Equating Eqs.(27) and (28)

4 (𝟏 𝒗) B =0

∴ B=0

Equating (22) becomes

𝝈𝒓=
𝑨
𝒓𝟐 + 2C

…………………. (29)

𝝈 = - 𝑨
𝒓𝟐 + 2C

The boundary conditions are

𝝈𝒓= - 𝑷𝒊 at r=a

𝝈𝒓= - 𝑷˳ at r=b



Using these B.Cs.

∴A= 𝒂𝟐 .𝒃𝟐 𝑷° 𝑷𝒊
𝒃𝟐 𝒂𝟐

2C= 𝒂𝟐 .𝑷𝒊 𝒃𝟐.𝑷°
𝒃𝟐 𝒂𝟐

Hence Eq.(29) becomes

𝝈𝒓=
𝒂𝟐 .𝒃𝟐 𝑷° 𝑷𝒊

𝒃𝟐 𝒂𝟐
𝟏

𝒓𝟐 +
𝒂𝟐 .𝑷𝒊 𝒃𝟐.𝑷°

𝒃𝟐 𝒂𝟐

………………………….. (30)

𝝈 = - 𝒂𝟐 .𝒃𝟐 𝑷° 𝑷𝒊
𝒃𝟐 𝒂𝟐

𝟏
𝒓𝟐 +

𝒂𝟐 .𝑷𝒊 𝒃𝟐.𝑷°
𝒃𝟐 𝒂𝟐

Substituting Eqs.(30) into Eq.(25)

∴ 𝝈𝒛 =
𝟐𝒗 𝒂𝟐 .𝑷𝒊 𝒃𝟐.𝑷°

𝒃𝟐 𝒂𝟐 = constant

If 𝑷𝒊 0 and       𝑷° =0 , Eqs.(30) become



𝝈𝒓
𝒂𝟐 .𝑷𝒊

𝒃𝟐 𝒂𝟐 (1 -
𝒃𝟐

𝒓𝟐)

………………………. (31)

𝝈 = 𝒂𝟐 .𝑷𝒊
𝒃𝟐 𝒂𝟐 (1 +

𝒃𝟐

𝒓𝟐)

From the second of Eqs.(31) and when the thickness t= b –a becomes very small in comparison with the radius

𝒓°=
𝒂 𝒃

𝟐
, then

𝝈 = 𝒂𝟐 .𝑷𝒊
𝒃𝟐 𝒂𝟐 (1 +

𝒃𝟐

𝒂𝟐) =
𝒓˳

𝟐 .𝒑 
𝒃 𝒂 𝒃 𝒂

(1+ 𝒃𝟐

𝒓˳𝟐) =
𝒓˳

𝟐 .𝒑 𝟏 𝟏
𝟐𝒓˳  .𝒕

= p. 𝒓°
𝒕



Line Load Acting on the Free Surface of a Plate 
(Boussinesque – Flamant Solution)

For this case thr stress function is assumed to be

𝝓 r ,θ C . r . θ . Sin θ ………………… 1

where C is a constant

Equation (1) can be shown to satisfy the compatibility equation

𝝏𝟐

𝝏𝒓𝟐 + 𝟏
𝒓

𝝏
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐

𝝏 𝟐 ) (𝝏𝟐𝝓
𝝏𝒓𝟐 + 𝟏

𝒓
𝝏𝝓
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐𝝓
𝝏 𝟐 ) =0

The components of stress in this case are given by:

𝛔𝐫= 𝟏
𝐫

𝛛𝛟
𝛛𝐫

+ 𝟏
𝐫𝟐

𝛛𝟐𝛟
𝛛𝛉𝟐 = 𝟐 𝐂

𝐫
cos θ

𝝈 = 𝝏𝟐𝝓
𝝏𝒓𝟐 =0 ………(2)

𝝉𝒓 = 𝟏
𝒓𝟐

𝝏𝝓
𝝏

- 𝟏
𝒓

𝝏𝟐𝝓
𝛛𝐫 𝛛

= 0



The boundary conditions which must be satisfied are:

1) for θ = 𝝅
𝟐

               𝝈 𝝉𝒓𝜽= 0

……………….. (3)

2 𝒄𝒐𝒔θ 𝟐 𝝈𝒓 . 𝒅 -p

The first boundary condition is identically satisfied by the last two of Eqs. (2). The second of Eqs.(3) determines the
constant C



The second of Eqs. (3) can be obtained by considering the vertical equilibrium of semi –circular portion of constant

r (∑ 𝒇𝒙 𝟎

    𝒄𝒐𝒔θ 𝟐 𝝈𝒓 . 𝒅 -p

∴ - p 2   𝒄𝒐𝒔θ 𝟐
𝟎

𝟐𝒄
𝒓

 𝒄𝒐𝒔θ. r . 𝒅θ )

∴ - p 4 C 𝟏
𝟐

 𝟏 𝒄𝒐𝒔𝟐θ 𝒅θ
𝟐

𝟎

∴ C - 𝒑 

∴ 𝝈𝒓 - 𝟐 𝒑 𝒄𝒐𝒔θ
𝒓

 



Stresses in Plate With Circular Holes

Consider an infinite plate subjected to a uniform tensile stress of intensity 𝝈° in the x-direction. If there is no hole in
the plate the state of stress will be given by

(𝝈𝒙)₁ 𝝈°

(𝝈𝒚)₁ (𝝉𝒙𝒚)₁ 𝟎

Where the suffix 1 denotes the case of no hole.

This state of stress can be derived from the stress function

𝝓𝟏= 𝟏
𝟐

𝝈° . 𝒚𝟐

From which

𝝈𝒙
𝝏𝟐𝝓𝟏
𝝏𝒚𝟐 , 𝝈𝒚

𝝏𝟐𝝓𝟏
𝝏𝒙𝟐 , 𝝉𝒙𝒚 = - 𝝏𝟐𝝓𝟏

𝝏𝒙 𝝏𝒚



In polar coordinates

𝝓𝟏= 𝟏
𝟐

𝝈° . 𝒓𝟐. 𝒔𝒊𝒏𝟐 𝜽 = 𝝈°
𝟒

𝒓𝟐 (1- cos2𝜽)

The corresponding stress components are

(𝝈𝒓)₁ 𝟏
𝒓

𝝏𝝓𝟏
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐𝝓𝟏
𝝏𝜽𝟐 = 𝝈°

𝟐
(1+ cos2𝜽)

(𝝈𝜽)₁ 𝝏𝟐𝝓𝟏
𝝏𝒓𝟐 = 𝝈°

𝟐
(1- cos2𝜽)

(𝝉𝒓𝜽)₁ - 𝝏
𝝏𝒓

(𝟏
𝒓

𝝏𝝓𝟏
𝝏𝜽

) = - 𝝈°
𝟐

sin2𝜽

Suppose that a hole of radius a is drilled through the plate. The new system of stresses 𝝈𝒓, 𝝈𝜽 and 𝝉𝒓𝜽 must satisfy the
following B.CS.

1 𝝈𝒓= 0 at r=a (for all 𝜽)

2 𝝉𝒓𝜽= 0 at r=a (for all 𝜽)

3) When r= ∞ , 𝝈𝒓= (𝝈𝒓)₁ , 𝝈𝜽= (𝝈𝜽)₁ , 𝝉𝒓𝜽= (𝝉𝒓𝜽)₁



The stresses must be derived from a stress function 𝝓 which must satisfy the compatibility equation

( 𝝏𝟐

𝝏𝒓𝟐 + 𝟏
𝒓

𝝏
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐

𝝏 𝟐 ) (𝝏𝟐𝝓
𝝏𝒓𝟐 + 𝟏

𝒓
𝝏𝝓
𝝏𝒓

+ 𝟏
𝒓𝟐

𝝏𝟐𝝓
𝝏 𝟐 ) =0 ……………….. (1)

Assume this unknown stress function 𝝓 to be composed of a function 𝒇𝟏 𝒓 plus a function 𝒇𝟐 𝒓 multiplied by cos2𝜽,

thus

𝝓 (r , θ ) = 𝒇𝟏 𝒓 + 𝒇𝟐 𝒓 . Cos2θ

Substituting 𝝓 into Eq.(1)

∴ [ 𝒅𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅
𝒅𝒓

] [𝒅𝟐𝒇𝟏
𝒅𝒓𝟐 + 𝟏

𝒓
𝒅𝒇𝟏
𝒅𝒓

] + [ 𝒅𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅
𝒅𝒓

- 𝟒
𝒓𝟐] [𝒅𝟐𝒇𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅𝒇𝟐
𝒅𝒓

- 𝟒𝒇𝟐
𝒓𝟐 ] cos2θ 0

∴ [ 𝒅𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅
𝒅𝒓

] [𝒅𝟐𝒇𝟏
𝒅𝒓𝟐 + 𝟏

𝒓
𝒅𝒇𝟏
𝒅𝒓

] = 0

And …………………….(2)

[ 𝒅𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅
𝒅𝒓

- 𝟒
𝒓𝟐 ] [𝒅𝟐𝒇𝟐

𝒅𝒓𝟐 + 𝟏
𝒓

𝒅𝒇𝟐
𝒅𝒓

- 𝟒𝒇𝟐
𝒓𝟐 ] =0



The solutions of Eqs.(2) are

𝒇𝟏 𝒓 = 𝑪𝟏. 𝒓𝟐 . lnr + 𝑪𝟐. 𝒓𝟐 + 𝑪𝟑. lnr + 𝑪𝟒

𝒇𝟐 𝒓 = 𝑪𝟓. 𝒓𝟐 + 𝑪𝟔. 𝒓𝟒 + 𝑪𝟕. 𝟏
𝒓𝟐 + 𝑪𝟖

These solutions may be obtained by two methods:

1) by rewriting Eqs.(2) in the following forms

𝟏
𝒓

𝒅
𝒅𝒓

{ r . 𝒅
𝒅𝒓

[𝟏
𝒓

𝒅
𝒅𝒓

( r . 𝒅𝒇𝟏
𝒅𝒓

)]} =0

r . 𝒅
𝒅𝒓

( 𝟏
𝒓𝟑 . 𝒅

𝒅𝒓
{𝒓𝟑. 𝒅

𝒅𝒓
[ 𝟏

𝒓𝟑
𝒅

𝒅𝒓
(𝒓𝟐. 𝒇𝟐 ]}) =0

And by integrating the above.

2) by expanding Eqs.(2), setting t= 𝐥𝐧 r , and thereby transforming the resulting expressions into two ordinary
differential equations with constant coefficients.



The resulting stress function 𝝓 (r , θ ) is

𝝓= [𝑪𝟏. 𝒓𝟐 . lnr + 𝑪𝟐. 𝒓𝟐 + 𝑪𝟑. lnr + 𝑪𝟒 ] + [𝑪𝟓. 𝒓𝟐 + 𝑪𝟔. 𝒓𝟒 + 𝑪𝟕. 𝟏
𝒓𝟐 + 𝑪𝟖] cos2θ

The stresses will be

𝝈𝒓 = 𝑪𝟏 (1 + 2 . lnr) + 2𝑪𝟐 + 𝑪𝟑
𝒓𝟐 - ( 2 𝑪𝟓 + 𝑪𝟕

𝒓𝟒 + 𝟒𝑪𝟖
𝒓𝟐 ) cos2θ

𝝈𝜽 = 𝑪𝟏 (3 + 2 . lnr) + 2𝑪𝟐 - 𝑪𝟑
𝒓𝟐 +(2 𝑪𝟓 + 12 𝑪𝟔. 𝒓𝟐+ 𝟔 𝑪𝟕

𝒓𝟒 ) cos2θ

𝝉𝒓𝜽 2 𝑪𝟓 + 6 𝑪𝟔. 𝒓𝟐 - 𝟔 𝑪𝟕
𝒓𝟒 - 𝟐 𝑪𝟖

𝒓𝟐 ) sin2θ

Where 𝑪𝟏 to 𝑪𝟖 are constants to be determined

1) The absence of 𝑪𝟒 in the expressions of stresses indicates that it has no influence upon the solution. Thus 𝑪𝟒 𝟎
may be used.

2) Since, for 𝒓 → ∞ , 𝝈𝒓, 𝝈𝜽 , and 𝝉𝒓𝜽 must be finite { or 𝝈𝒓 → (𝝈𝒓)₁ , 𝝈𝜽 → (𝝈𝜽)₁ , and 𝝉𝒓𝜽 → (𝝉𝒓𝜽)₁ }, it follows that 𝑪𝟏
= 𝑪𝟔 =0



3) Also at 𝒓 → ∞ , 𝝈𝒓 → (𝝈𝒓)₁ , thus 2 𝑪𝟐 - 2 𝑪𝟓. cos2θ = 𝝈˳
𝟐

+ 𝝈˳
𝟐

cos2θ

∴ 2 𝑪𝟐 = 𝝈˳
𝟐

and - 2 𝑪𝟓= 𝝈˳
𝟐

𝝈𝜽= (𝝈𝜽)₁ , thus

2 𝑪𝟐 + 2 𝑪𝟓. cos2θ = 𝝈˳
𝟐

- 𝝈˳
𝟐

cos2θ

∴ 2 𝑪𝟐 = 𝝈˳
𝟐

and 2 𝑪𝟓= - 𝝈˳
𝟐

as before

𝝉𝒓𝜽  → (𝝉𝒓𝜽)₁ , thus

2 𝑪𝟓 . Sin2θ - 𝝈˳
𝟐

. Sin2θ

2 𝑪𝟓= - 𝝈˳
𝟐

as before

𝑪𝟐 = 𝝈˳
𝟒

and 𝑪𝟓 = - 𝝈˳
𝟒



4) To find 𝑪𝟑 , 𝑪𝟕 and 𝑪𝟖 use

𝝈𝒓 = 0

at r=a

𝝉𝒓𝜽 =0

∴ 0 = 2 𝑪𝟐 + 𝑪𝟑
𝒂𝟐 - (2 𝑪𝟓 + 6 𝑪𝟕

𝒂𝟒 +  𝟒 𝑪𝟖
𝒂𝟐 ) cos2θ

∴ 2 𝑪𝟐 + 𝑪𝟑
𝒂𝟐 = 0 and 2 𝑪𝟓 + 6 𝑪𝟕

𝒂𝟒 +  𝟒 𝑪𝟖
𝒂𝟐 = 0

and for 𝝉𝒓𝜽 =0

0 = (2 𝑪𝟓 + 6 𝑪𝟕
𝒂𝟒 +  𝟒 𝑪𝟖

𝒂𝟐 ) sin2θ

∴ 2 𝑪𝟓 - 6 𝑪𝟕
𝒂𝟒 -  𝟐 𝑪𝟖

𝒂𝟐 = 0

Hence 𝑪𝟑 = - 𝒂𝟐 𝝈˳
𝟐

, 𝑪𝟕 = - 𝒂𝟒 𝝈˳
𝟐

, 𝑪𝟖
𝒂𝟐 𝝈˳

𝟐



Substituting , then

𝝈𝜽 = 𝝈˳
𝟐

[ ( 1+ 𝒂𝟐

𝒓𝟐 ) – ( 1+ 𝟑 𝒂𝟒

𝒓𝟒 ) cos2θ

∴ 𝝈𝜽 𝒓 𝒂 = 𝝈˳
𝟐

[ (2) – (4) cos2θ 𝝈˳ - 2 𝝈˳ . Cos2θ

𝝅
𝟐

From which  𝝈𝜽 𝒎𝒂𝒙 3 𝝈˳ for θ

𝟑𝝅
𝟐



Thus due to the presence of the hole one has at the two points A and B a stress concentration, i.e., the stress is
increased three times its average value. This phenomenon is localized near the hole. In fact

𝝈𝜽 θ 𝝅
𝟐 ,𝟑𝝅

𝟐
= 𝝈˳

𝟐
[ 2 + 𝒂𝟐

𝒓𝟐 + 𝟑 𝒂𝟒

𝒓𝟒 ] 𝝈˳ for r 𝟏𝟎 𝐚

The stress concentration factor, defined as the ratio of

maximum stress 𝝈𝜽 𝒎𝒂𝒙 at the hole to the nominal stress 𝝈˳ is

K =  𝟑 𝝈˳
𝝈˳

= 3



Torsion

Coulomb’s Theory of Torsion of a Circular Shaft

L = length of bar

R = radius

J = polar moment of inertia

𝑴𝒕 = applied torque

𝜽 angle of twist

𝜸 = shearing strain

𝒅𝒔= 𝜸 . 𝒅𝒛 = R . 𝒅𝜽

∴ 𝜸 = R .
𝒅𝜽
𝒅𝒛



Torsion

Since 𝝉 = G . 𝜸

where G = shear modulus of elasticity

∴ 𝝉𝑹 G . 𝑹 .
𝒅𝜽
𝒅𝒛

( shear stress at distance R from the shaft axis)

Similarly

𝝉𝒓 G . 𝒓 .
𝒅𝜽
𝒅𝒛

( shear stress at distance r from the shaft axis)

∴ 𝝉𝒓
 𝝉𝑹

= 𝒓
𝑹

Or

𝝉𝒓
𝒓
𝑹

 𝝉𝑹



The condition of equilibrium between torque 𝑴𝒕 and the internal moment is

𝑴𝒕 = 𝝉𝒓 . 𝒓 . 𝒅𝑨
𝑹

𝟎 = 𝑮 . 𝒓 .
𝒅𝜽
𝒅𝒛

𝑹

𝟎
) . r . ( 2𝝅r . 𝒅𝒓 )

= 2𝝅𝐆 .
𝒅𝜽
𝒅𝒛

𝒓𝟑. 𝒅𝒓
𝑹

𝟎

Since

J = 2𝝅 𝒓𝟑. 𝒅𝒓
𝑹

𝟎

= 𝝅𝑹𝟒

𝟐
( polar moment of inertia)

∴ 𝑴𝒕 = 𝐆 .
𝒅𝜽
𝒅𝒛

. J

Or

𝑴𝒕
𝑱

= 𝐆 .
𝒅𝜽
𝒅𝒛



∴ 𝝉𝑹 = 𝑴𝒕
𝑱

. R and  𝝉𝒓 = 𝑴𝒕
𝑱

. R

Also

𝒅𝜽 = 𝑴𝒕
𝑮.𝑱

. 𝒅𝒛

∴ 𝜽 = 𝒅𝜽 = 𝑴𝒕
𝑮.𝑱

 . 𝒅𝒛 = 𝑴𝒕
𝑮.𝑱

 𝒅𝒛 = 𝑴𝒕 .𝑳
𝑮.𝑱

∴   𝑴𝒕
𝑱

= 𝑮 . 𝜽
𝑳

= 𝝉𝒓
𝒓

In this theory it is assumed that plane cross sections remain plane after twist .



Torsion

Navier’s Theory of Torsion

According to Naviers theory the components of the elastic displacement are

u = - 𝒑𝒑  𝒔𝒊𝒏 𝜶 = - ( θ . z . r 𝒔𝒊𝒏 𝜶 = - θ . z . ( r 𝒔𝒊𝒏 𝜶

θ . z . y ( in X – direction)

v = - 𝒑𝒑  𝒄𝒐𝒔 𝜶 = - ( θ . z . r 𝒄𝒐𝒔 𝜶 = - θ . z . ( r 𝒄𝒐𝒔 𝜶

θ . z . x ( in Y – direction)

w = 0 ( in Z – direction)

Where the angle of twist at a distance z from the

fixed end is θ . z ( θ is the angle of twist per unit length )

The strains will be



Hence 𝝉𝒓𝒛 = 0 and 𝝉θ 𝒁 = G . θ . 𝒓

By computing the resultant forces and moments on a cross sectional area of the sided:

1) For the resultant forces

∬ 𝝉𝒙𝒛. 𝒅𝒙 . 𝒅𝒚𝜴 - G θ ∬ 𝒚. 𝒅𝒙 . 𝒅𝒚𝜴 0 in X - direction)

∬ 𝝉𝒚𝒛. 𝒅𝒙 . 𝒅𝒚𝜴 - G θ ∬ 𝒙 . 𝒅𝒙 . 𝒅𝒚𝜴 0 in Y - direction)

∬ 𝝈𝒛. 𝒅𝒙 . 𝒅𝒚𝜴 = 0 in Z - direction)

2) For the resultant moments

∬ 𝒚 . 𝝈𝒛. 𝜴 𝒅𝒙 . 𝒅𝒚 0 about X - direction)

∬ 𝒙. 𝝈𝒛. 𝜴 𝒅𝒙 . 𝒅𝒚 0 about Y - direction)

∬ 𝒙. 𝝉𝒚𝒛𝜴  y .𝝉𝒙𝒛) 𝒅𝒙 . 𝒅𝒚 = G θ ∬ 𝒙𝟐 𝒚𝟐
𝜴 𝒅𝒙 . 𝒅𝒚 = 𝑴𝒕 ( applied torque)



Calling J the polar moment of inertia of the cross section where

J = ∬ 𝒙𝟐 𝒚𝟐
𝜴 𝒅𝒙 . 𝒅𝒚

Then

θ = 𝑴𝒕
𝑮.𝑱

The weak point in Navier’s theory lies in the fact that the boundary conditions are not satisfied, i.e.

𝒙 = 𝝈𝒙 . Cos(n x) + 𝝉𝒙𝒚 . Cos(n y) + 𝝉𝒙𝒛 . Cos(n z)

𝒚 = 𝝉𝒚𝒙. Cos(n x) +𝝈𝒚 . Cos(n y) + 𝝉𝒚𝒛 . Cos(n z)

𝒛 = 𝝉𝒛𝒙. Cos(n x) + 𝝉𝒛𝒚 . Cos(n y) +𝝈𝒛 . Cos(n z)

For the present case

𝒙 = 𝒚 = 𝒛 = 𝝈𝒙 = 𝝈𝒚 = 𝝈𝒛 = 𝝉𝒙𝒚 = cos (n z) = 0



Hence the first two B.Cs. are identically satisfied, while the third becomes

𝝉𝒙𝒛 . Cos (n x) + 𝝉𝒚𝒛 . Cos (n y) = 0

Substituting for 𝝉𝒙𝒛 and 𝝉𝒚𝒛

∴ - G . θ . y . Cos (n x) + G . θ . x . Cos (n y) = 0

But

Cos (n x) =
𝐝𝒚

𝐝𝒔
and Cos (n y) = - 𝐝𝒙

𝐝𝒔

∴ - G . θ . y . 𝐝𝒚

𝐝𝒔
 G . θ . x . 𝐝𝒙

𝐝𝒔
0

Or y . 𝐝𝒚 + x . 𝐝𝒙 = 0

Or 𝒙𝟐 𝒚𝟐= const.

This equation shows that with the exception of the cases in which the cross section of the bar is a circle or two
concentric circles, the boundary conditions are not satisfied by Navier’s theory.



Saint – Venant’s Semi – Inverse Method

Saint – Venant assumed for the components of the elastic displacement, the following expressions:

u - θ . z . y

v θ . z . X …………………… 1

w = θ . 𝝓 ( x , y )

Where 𝝓 ( x , y ) is a function of the variables x and y . It is called the warping function.

The strains will be

𝝐𝒙= 𝝐𝒚 = 𝝐𝒛 = 𝜸𝒙𝒚 = 0

𝜸𝒛𝒚 = θ x 𝝏𝝓
𝝏𝒚

) , 𝜸𝒛𝒙 = θ - y 𝝏𝝓
𝝏𝒙

)



The components of stress are:

𝝈𝒙 = 𝝈𝒚 = 𝝈𝒙 = 𝝉𝒙𝒚 = 0

𝝉𝒛𝒚 = G θ ( x + 𝝏𝝓
𝝏𝒚

) …………….(2)

𝝉𝒛𝒙 = G θ ( - y + 𝝏𝝓
𝝏𝒙

)

Substituting Eqs.(2) into the equations of equilibrium ( the body forces are zero ), the first two equations are
identically satisfied and the third equation becomes

𝝏𝟐𝝓
𝝏𝒙𝟐 + 𝝏𝟐𝝓

𝝏𝒚𝟐 = 0 …………………………….(3)

Substituting Eqs.(2) into the boundary conditions equations ( where 𝒙 = 𝒚 = 𝒛 = Cos(n z) =0 ), the first two equations
are identically satisfied, while the third equation becomes

𝝉𝒛𝒙 . Cos(n x) + 𝝉𝒛𝒚 . Cos(n y) = 0 ……...(4)



Using Cos(n x) = - 𝒅𝒚
𝒅𝒔

Cos(n y) = 𝒅𝒙
𝒅𝒔

and substituting for 𝝉𝒛𝒙 and 𝝉𝒛𝒚 from Eqs. (2), Eq. (4) becomes

( 𝝏𝝓
𝝏𝒙

- y ) 𝒅𝒚
𝒅𝒔

- (𝝏𝝓
𝝏𝒚

+ x ) 𝒅𝒙
𝒅𝒔

= 0 ……………… (5)

According to Saint – Venant’s theory, the torsion problem is reduced to the problem of finding the function 𝝓 ( x , y )
satisfying Eq.(3) and the B.C equation (Eq.5).

The resultant from twisting moment is obtained from

𝑴𝒕 = ∬ 𝒙. 𝝉𝒚𝒛𝜴  y .𝝉𝒙𝒛) 𝒅𝒙 . 𝒅𝒚

= G θ ∬ 𝒙𝟐 𝒚𝟐 𝒙 𝝏𝝓
𝝏𝒚

 𝒚 𝝏𝝓
𝝏𝒙𝜴 𝒅𝒙 . 𝒅𝒚

The integral J = ∬ 𝒙𝟐 𝒚𝟐 𝒙 𝝏𝝓
𝝏𝒚

 𝒚 𝝏𝝓
𝝏𝒙𝜴 𝒅𝒙 . 𝒅𝒚 is called the torsional constant.



Example:

For the case where the cross section of the shaft is an ellise which has semi – axes a and b , assume the warping
function as

𝝓 ( x , y ) = 𝒃𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐 x . y

This function satisfies Eq.(3).

Substituting 𝝓 into Eq.(5), then

[𝒃𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐 - 1] y . 𝒅𝒚
𝒅𝒔

- [𝒃𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐 + 1] x . 𝒅𝒙
𝒅𝒔

= 0

∴  𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐 . y . 𝒅𝒚
𝒅𝒔

- 𝟐 𝒃𝟐 
𝒂𝟐 𝒃𝟐 . x . 𝒅𝒙

𝒅𝒔
= 0

∴  𝒂𝟐. y . 𝒅𝒚
𝒅𝒔

+  𝒃𝟐. x . 𝒅𝒙
𝒅𝒔

= 0

∴   𝒂𝟐

𝟐
𝒅

𝒅𝒔
( 𝒚𝟐) +   𝒃𝟐

𝟐
𝒅

𝒅𝒔
( 𝒙𝟐) = 0 ∴  𝒂𝟐. d ( 𝒚𝟐) +  𝒃𝟐. d ( 𝒙𝟐) = 0

∴  𝒂𝟐. ( 𝒚𝟐) +  𝒃𝟐. ( 𝒙𝟐) = C



Dividing by ( 𝒂𝟐 .  𝒃𝟐) and letting  𝑪
 𝒂𝟐 .  𝒃𝟐 = 1, then

𝒙𝟐 
𝒂𝟐 + 𝒚𝟐 

𝒃𝟐 = 1

which is the equation of an ellipse .

The torsional constant for the bar is

J = ∬ 𝒙𝟐 𝒚𝟐 𝒙 𝝏𝝓
𝝏𝒚

 𝒚 𝝏𝝓
𝝏𝒙𝜴 𝒅𝒙 . 𝒅𝒚

= ∬ 𝒙𝟐 𝒚𝟐 𝒃𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐  . 𝒙𝟐 𝒃𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐  . 𝒚𝟐
𝜴 𝒅𝒙 . 𝒅𝒚

=  𝟐 𝒃𝟐

𝒂𝟐 𝒃𝟐 𝑰𝒚 +  𝟐 𝒂𝟐

𝒂𝟐 𝒃𝟐 𝑰𝒙 =  𝝅 𝒂𝟐 𝒃𝟑

𝒂𝟐 𝒃𝟐

where 𝑰𝒙 =  𝝅 𝒂 𝒃𝟑

𝟒
and 𝑰𝒚 =  𝝅 𝒃 𝒂𝟑

𝟒

The angle of twist per unit length is



θ = 𝑴𝒕
𝑮.𝑱

= 𝑴𝒕 𝒂𝟐 𝒃𝟐

𝑮 .𝝅 .𝒂𝟑.𝒃𝟑

The components of elastic displacement are

u - θ . z . y - 𝑴𝒕 𝒂𝟐 𝒃𝟐

𝑮 .𝝅 .𝒂𝟑.𝒃𝟑 z . y

v θ . z . x 𝑴𝒕 𝒂𝟐 𝒃𝟐

𝑮 .𝝅 .𝒂𝟑.𝒃𝟑 z . x

w = θ . 𝝓 = 𝑴𝒕 𝒃𝟐  𝒂𝟐

𝑮 .𝝅 .𝒂𝟑.𝒃𝟑 x . y

The stresses are

𝝉𝒚𝒛 = G θ ( x + 𝝏𝝓
𝝏𝒚

) = 𝟐 𝑴𝒕  .𝒙 
𝝅 .𝒂𝟑.𝒃

𝝉𝒙𝒛 = G θ ( - y + 𝝏𝝓
𝝏𝒙

)= - 𝟐 𝑴𝒕  .𝒚 
𝝅 .𝒃𝟑.𝒂



Prandtl’s Theory

The components of the elastic displacements are

u - θ . z . y

v θ . z . X …………………… 1

w = θ . 𝝓 ( x , y )

The components of stress are

𝝈𝒙 = 𝝈𝒚 = 𝝈𝒙 = 𝝉𝒙𝒚 = 0

𝝉𝒚𝒛 = G θ ( x + 𝝏𝝓
𝝏𝒚

) …………….(2)

𝝉𝒙𝒛 = G θ ( - y + 𝝏𝝓
𝝏𝒙

)



Substituting Eqs.(2) into the equations of equilibrium, then

𝝏𝝉𝒙𝒛
𝝏𝒛

= 0

𝝏𝝉𝒚𝒛

𝝏𝒛
= 0 ………….. (3)

𝝏𝝉𝒛𝒙
𝝏𝒙

+
𝝏𝝉𝒛𝒚

𝝏𝒚
= 0

The first two of Eqs(3) are satisfied since 𝝉𝒙𝒛 and 𝝉𝒚𝒛 are independent of z.

In order to satisfy the third of Eqs.(3), Prandtl introduces a stress function 𝝍 ( x ,y ) such that

𝝉𝒙𝒛 = 𝝏𝝍
𝝏𝒚

, 𝝉𝒚𝒛 = - 𝝏𝝍
𝝏𝒙

………………… (4)

∴ 𝝉𝒙𝒛 = 𝝏𝝍
𝝏𝒚

= G θ ( - y + 𝝏𝝓
𝝏𝒙

)

……... (5)

   𝝉𝒚𝒛 = - 𝝏𝝍
𝝏𝒙

= G θ ( x + 𝝏𝝓
𝝏𝒚

)



Differentiating the first of Eqs. (5) w.r.t.y, the second w.r.t.x, and subtracting the first from the second, then

𝝏𝟐𝝍
𝝏𝒙𝟐 + 𝝏𝟐𝝍

𝝏𝒚𝟐 = -2G. θ ……………………………….. 6

Considering the B.Cs. equations (as in Saint – Venant theory), then

𝝉𝒙𝒛 . Cos (n x) + 𝝉𝒚𝒛 . Cos (n y) = 0

∴ 𝝏𝝍
𝝏𝒚

𝒅𝒚
𝒅𝒔

+ 𝝏𝝍
𝝏𝒙

𝒅𝒙
𝒅𝒔

= 0 ∴ 𝝏𝝍
𝝏𝒔

= 0 ….. (7)

Eq.(7) shows that the stress function 𝝍 ( x ,y ) must be constant along the boundary of the cross section. The value of
𝝍 at the boundary can be chosen arbitrarily. It is usually conveniently made equal to zero, i.e., 𝝍 ( x ,y ) = 0 on the
boundary.

According to Prandtl’s theory, the problem is reduced to finding the function 𝝍 ( x ,y ) which satisfies Eq.(6) and
which is zero along the boundary.



The conditions at the end surface are:

Cos (n x) = Cos (n y) = 0 , Cos (n z) = 1

𝝈𝒙 = 𝝈𝒚 = 𝝈𝒙 = 𝝉𝒙𝒚 = 0

The boundary conditions become

𝒙 = 𝝉𝒙𝒛

𝒚 = 𝝉𝒚𝒛 …………… (8)

𝒛 = 0

Substituting Eqs.(4) into Eqs.(8) and computing the resultant force, then

∬ 𝒙. 𝒅𝒙 . 𝒅𝒚𝜴 = ∬ 𝝉𝒙𝒛. 𝒅𝒙 . 𝒅𝒚𝜴 = ∬ 𝝏𝝍
𝝏𝒚

. 𝒅𝒙 . 𝒅𝒚𝜴

=  𝝏𝝍
𝝏𝒚

. 𝒅𝒚 . 𝒅𝒙 = 𝝍 𝒚𝟏
𝒚𝟐. 𝒅𝒙 = 0



Since 𝝍 is zero at the boundary of the cross section. Also

∬ 𝒀. 𝒅𝒙 . 𝒅𝒚𝜴 = ∬ 𝝉yz . 𝒅𝒙 . 𝒅𝒚𝜴 = - ∬ 𝝏𝝍
𝝏𝒙

. 𝒅𝒙 . 𝒅𝒚𝜴

=  𝝏𝝍
𝝏𝒙

. 𝒅𝒙 . 𝒅𝒚 = - 𝝍 𝒙𝟏
𝒙𝟐. 𝒅𝒚 = 0

Calling 𝑴𝒕 the couple acting on a free end,

𝑴𝒕 = ∬ 𝒀. 𝒙 𝑿 . 𝒚  𝒅𝒙 . 𝒅𝒚𝜴

= ∬ x𝜴  . 𝝉yz  . 𝒅𝒙 . 𝒅𝒚 - ∬ y𝜴  . 𝝉xz  . 𝒅𝒙 . 𝒅𝒚

But ∬ x𝜴  . 𝝉yz  . 𝒅𝒙 . 𝒅𝒚 = - ∬ x . 𝜴
𝝏𝝍
𝝏𝒙

. 𝒅𝒙 . 𝒅𝒚

= -  x .𝝍 𝒙𝟏
𝒙𝟐  - 𝝍 . 𝒅𝒙 𝒅𝒚 = ∬ 𝝍𝜴 . 𝒅𝒙 . 𝒅𝒚



Similarly

 ∬ y𝜴  . 𝝉xz  . 𝒅𝒙 . 𝒅𝒚 = - ∬ y . 𝜴
𝝏𝝍
𝝏𝒚

. 𝒅𝒙 . 𝒅𝒚

= -  y . 𝝍 𝒚𝟏
𝒚𝟐  - 𝝍 . 𝒅𝒚 𝒅𝒙

𝒚

𝒚
= ∬ 𝝍𝜴 . 𝒅𝒙 . 𝒅𝒚

∴ 𝑴𝒕 = 2∬ 𝝍 ( x ,y ) .  𝒅𝒙 . 𝒅𝒚𝜴



Example

Torsion of a bar with an elliptical cross section. Assume the stress function

𝝍 ( x ,y ) = m ( 𝒙𝟐

𝒂𝟐 + 𝒚𝟐

𝒃𝟐 - 1 )

where m is a constant to be determined. The function 𝝍 satisfies the B.C. 𝝍 = 0 . Substituting 𝝍 into Eq.(6)

𝝏𝟐𝝍
𝝏𝒙𝟐 + 𝝏𝟐𝝍

𝝏𝒚𝟐 = - 2G θ

∴ 2m 𝟏
𝒂𝟐 + 𝟏

𝒃𝟐 ) = - 2G θ

∴ m   𝒂𝟐.  𝒃𝟐

𝟐  𝒂𝟐 𝒃𝟐 F where F - 2G θ

The magnitude of the constant F is determined by

𝑴𝒕 = 2∬ 𝝍  .  𝒅𝒙 . 𝒅𝒚𝜴

F . 𝒂𝟐.  𝒃𝟐

  𝒂𝟐 𝒃𝟐
𝟏

𝒂𝟐 ∬ 𝒙𝟐. 𝜴  𝒅𝒙 . 𝒅𝒚 𝟏
𝒃𝟐 ∬ 𝒚𝟐.𝜴 𝒅𝒙 . 𝒅𝒚 - ∬𝜴 𝒅𝒙 . 𝒅𝒚



But

∬ 𝒙𝟐. 𝜴  𝒅𝒙 . 𝒅𝒚 = 𝑰𝒚 =  𝝅 𝒃 𝒂𝟑

𝟒

∬ 𝒚𝟐. 𝜴  𝒅𝒙 . 𝒅𝒚 = 𝑰𝒙 =  𝝅 𝒂 𝒃𝟑

𝟒

∬  𝜴  𝒅𝒙 . 𝒅𝒚 = Area = 𝝅 . a .b

∴ 𝑴𝒕 = - 𝝅 . 𝒂𝟑.  𝒃𝟑.𝑭
𝟐  𝒂𝟐 𝒃𝟐

∴ F = - 𝟐 𝑴𝒕  𝒂𝟐 𝒃𝟐

𝝅 . 𝒂𝟑.  𝒃𝟑

∴ 𝝍 - 𝑴𝒕
𝝅 .𝒂.𝒃

𝒙𝟐

𝒂𝟐 + 𝒚𝟐

𝒃𝟐 - 1 )

The stress components are

𝝉𝒙𝒛 = 𝝏𝝍
𝝏𝒚

= -  𝟐 𝑴𝒕 𝒚
𝝅 .𝒂 . 𝒃𝟑 𝝉𝒚𝒛 = - 𝝏𝝍

𝝏𝒙
 𝟐 𝑴𝒕 𝒙
𝝅 .𝒃 . 𝒂𝟑



The angle of twist per unit length is

θ =  𝟏
𝟐 𝑮

[𝝏𝟐𝝍
𝝏𝒙𝟐 + 𝝏𝟐𝝍

𝝏𝒚𝟐 𝑴𝒕 . 𝒂𝟐 𝒃𝟐

𝝅 . 𝒂𝟑.  𝒃𝟑 .𝑮

Example

Narrow rectangular section. Since the thickness t is small, then the only shear stress in the section will be 𝝉𝒙𝒛 . That is
𝝉𝒚𝒛 is nearly zero (or taken zero here)

but 𝝉𝒚𝒛 = - 𝝏𝝍
𝝏𝒙

0

Hence 𝝏𝝍
𝝏𝒙

0

Thus 𝝍 = 𝝍 (y)

Trying a parabolic expression

𝝍 = {( 𝒕
𝟐

𝟐 - 𝒚𝟐 } . m where m is a constant

This function give 𝝍 = 0 on the boundary y =  𝒕
𝟐



Substituting into 𝜵𝟐 𝝍 = - 2G θ , then

- 2 m - 2G θ

∴ m G θ

Hence 𝝍 = G θ { ( 𝒕
𝟐

𝟐 - 𝒚𝟐 }

If 𝑴𝒕 is the applied torque, then

𝑴𝒕 = 2∬ 𝝍  .  𝒅𝒙 . 𝒅𝒚𝜴

= 2 G θ { (  𝒕
𝟐

𝟐 − 𝒚𝟐 } .  𝒅𝒙 . 𝒅𝒚

ℓ

ℓ

= 2 G θ ( 𝒕
𝟐

𝟐   𝒅𝒙 . 𝒅𝒚

ℓ

ℓ -    𝒚𝟐 . 𝒅𝒙 . 𝒅𝒚

ℓ

ℓ ]



= 2 G θ ( 𝒕
𝟐

𝟐 . A - 𝑰𝒙 ] = 2 G θ ( 𝒕
𝟐

𝟐 .ℓ .t - ℓ 𝒕𝟑

𝟏𝟐
]

= G θ . ℓ 𝒕𝟑

𝟑

The shear stress 𝝉𝒙𝒛 = 𝝏𝝍
𝝏𝒚

= G θ - 2 y - 2 G. θ . Y

But

G θ 𝟑𝑴𝒕
ℓ 𝒕𝟑

∴ 𝝉𝒙𝒛 = - 6 𝑴𝒕
ℓ 𝒕𝟑 . y

Hence 𝝉𝒙𝒛 𝒎𝒂𝒙 = - 6 𝑴𝒕
ℓ 𝒕𝟑 (  𝒕

𝟐
) = 𝟑𝑴𝒕

ℓ 𝒕𝟐

The torsional stiffness k = 𝑴𝒕
θ =  G .ℓ.𝒕𝟑

𝟑



Torsion of Thin – Walled Tubes

Bredt – Batho Theory

Consider the thin – walled closed tube subjected to a torque T about the Z – axis

If 𝝉𝟏 is the shear stress at B and 𝝉𝟐 is the

shear stress at C (where the thickness has

increased to 𝒕𝟐 ) then from the equilibrium

of the complementary shears on the sides

AB and CD of the element

𝝉𝟏 . 𝒕𝟏 . 𝒅𝒛 = 𝝉𝟐 . 𝒕𝟐 . 𝒅𝒛

∴ 𝝉𝟏 . 𝒕𝟏 = 𝝉𝟐 . 𝒕𝟐



i.e., the product of the shear stress and the thickness is constant at all points on the periphery of the tube. This
constant is termed the shear flow and denoted by the symbol q (shear force per unit length ). Thus

q = 𝝉 . t = constant …………… (1)

At any point, the shear force Q on an element of length 𝒅𝒔 is Q = q . 𝒅𝒔 and the shear stress is 𝒒
𝒕

.

The moment of force Q about o is 𝒅𝑻

𝒅𝑻 = Q . r

∴ 𝒅𝑻 = q . 𝒅𝒔 . r

∴ the moment, or torque, for the whole section T

T = 𝒅𝑻 = 𝒒 . 𝒓. 𝒅𝒔 = q 𝒓. 𝒅𝒔

But the area COB = 𝟏
𝟐

* base * height = 𝟏
𝟐

r . 𝒅𝒔

i.e., 𝒅𝑨 = 𝟏
𝟐

r . 𝒅𝒔



Or

2 𝒅𝑨 = r . 𝒅𝒔

∴ T q 𝟐 . 𝒅𝑨

∴ T 2 q A …………… (2)

Where A is the area enclosed within the median line of the wall thickness.

Since q = 𝝉 . t

∴ T 2 𝝉 . t . A

Or 𝝉 = 𝑻
𝟐 𝑨 . 𝒕

……....(3)

Where t is the thickness at the point in question.

Consider an axial strip of the tube, of length ℓ, along which the thickness and hence the shear stress is constant. The
strain energy per unit volume is



𝑼 = 𝟏
𝟐

𝝉 . 𝜸 = 𝝉𝟐

𝟐 𝑮

Total energy in the tube

U = 𝑼 . 𝒅𝑽 = 𝝉𝟐

𝟐 𝑮
. 𝒅𝑽 = 𝝉𝟐

𝟐 𝑮
. 𝒕 . ℓ. 𝒅𝑺 = 𝑻

𝟐 𝑨 . 𝒕
𝟐 . 𝒕 . ℓ

𝟐 𝑮
. 𝒅𝑺

= 𝑻𝟐ℓ 
𝟖 𝑨𝟐 .𝑮 

𝒅𝑺
𝒕

 

Where the integration is along the perimeter of the cell.

The external work done by T is

W = 𝟏
𝟐

. T . θ where θ is the angle of twist

Hence

𝟏
𝟐

. T . θ = 𝑻𝟐ℓ 
𝟖 𝑨𝟐 .𝑮 

𝒅𝑺
𝒕

 



∴ θ = 𝑻 ℓ 
𝟒 𝑨𝟐 .𝑮 

𝒅𝑺
𝒕

 

Or

θ =
ℓ

 = 𝑻  
𝟒 𝑨𝟐 .𝑮 

𝒅𝑺
𝒕

 …………….. (4)

Where θ is the angle of twist per unit length, or

θ = 𝒒  
𝟐𝑨 .𝑮 

𝒅𝑺
𝒕

 



Thin Walled Cellular Sections

Consider the three typical cells i , j , and k .

∴ θ𝒋 =
𝒒𝒋

𝟐𝑨 .𝑮 
𝒅𝑺
𝒕

…………………………….. (1)

Where 𝑠 indicates integration around cell j.

If shear flow 𝒒𝒊 and 𝒒𝒌 are now introduced in

cells i and k, the flows in web 𝑠 𝒌 are reduced

to (𝒒𝒋 - 𝒒𝒊 ) and (𝒒𝒋 - 𝒒𝒌 ) respectively. Then

θ𝒋 = 𝟏
𝟐𝑮𝑨𝒋

[𝒒𝒋
𝒅𝑺
𝒕

-  𝒎 𝒒𝒓
𝒅𝑺
𝒕

𝒓

)] …….. (2)

In our case, cell j is bounded by two cells, i.e., m=2 and



θ𝒋 = 𝟏
𝟐𝑮𝑨𝒋

(𝒒𝒋
𝒅𝑺
𝒕

- 𝒒𝒊
𝒅𝑺
𝒅𝒕

𝒋𝒊

- 𝒒𝒌
𝒅𝑺
𝒕

𝒌

) ………….. (3)

One such equation (Eq.2 or 3) may be written for each of the n cells, and the resulting n linearly independent
equations plus the equation

T = 2 𝒒𝒋 . 𝑨𝒋
𝒏

𝒋
= 𝑻𝟏 + 𝑻𝟐 + ……….. + 𝑻𝒏

provide (n + 1) equations in the n+1 unknowns, 𝒒𝟏 , 𝒒𝟐 , 𝒒𝟑 , ……. , 𝒒𝒏 , and θ .

Multiplying both sides of Eq.(3) [ or 2] by 2 𝑨𝒋 , this equation foe cell j becomes

𝑠𝒋𝒊 . 𝒒𝒊 + 𝑠𝒋𝒋 . 𝒒𝒋 + 𝑠 𝒌 . 𝒒𝒌 - 2 𝑨𝒋 . θ =0 ………………(4)

Where

𝑠𝒋𝒊 = - 𝟏
𝑮

𝒅𝑺
𝒕

𝒋𝒊

, 𝑠 𝒌 = - 𝟏
𝑮

 𝒅𝑺
𝒕

𝒌

, 𝑠𝒋𝒋 = 𝟏
𝑮

 𝒅𝑺
𝒕

Note that θ is used instead of θ𝒋 , since θ𝟏 = θ𝟐 = ……. = θ𝒋 = θ𝒏



Example:

The semi – circular tube is under a torque of 2 t.m. calculate the shear stresses in the walls and also the angle of twist
per unite length. G = 800 t / 𝒄𝒎 .

Solution:

The constant shear flow in the wall is

q = 𝑻
𝟐 𝑨

= 𝟐𝟎𝟎
𝟐 ∗  ∗ 𝟐𝟎

= 0.64 t /cm

In the vertical wall the shear stress is

𝝉 = 𝒒
𝒕

= 𝟎.𝟔𝟒
𝟎.𝟖

= 0.8 t / 𝒄𝒎

In the curved wall

𝝉 = 𝒒
𝒕

= 𝟎.𝟔𝟒
𝟎.𝟓

= 1.28 t / 𝒄𝒎



The angle of twist per unit length is

θ = 𝑻
𝟒  .𝑮 

𝒅𝑺
𝒕

= 𝟐𝟎𝟎
𝟒   ∗ 𝟐𝟎 .𝟖𝟎𝟎 

{𝟐𝟎
𝟎.𝟖

+
 ∗𝟐𝟎 

𝟎.𝟓
}

= 0.224 * 𝟏𝟎  𝟑 rad / cm = 1.27 o/cm



Example :

If the section is subjected to a torque of 320 N.m, determine the angle of twist per unit length and the maximum shear
stress set up. G = 30 * 𝟏𝟎 𝟗 N / 𝒎

Solution:

T = 2 𝒒𝟏 . 𝑨𝟏 + 2 𝒒𝟐 . 𝑨𝟐

320 * 𝟏𝟎 𝟑 = 2 𝒒𝟏 * 20 *40 + 2 𝒒𝟐 *50 *40 ………. (1)

𝒔𝟏𝟏 = 𝟏
𝑮

[𝟒𝟎 𝟐 ∗𝟐𝟎
𝟐

+ 𝟒𝟎
𝟑

] = 𝟏𝟔𝟎
𝟑 𝑮

𝒔𝟐𝟐 = 𝟏
𝑮

[𝟒𝟎
𝟑

𝟐 ∗𝟓𝟎 𝟒𝟎
𝟏.𝟓

] = 𝟑𝟐𝟎
𝟑 𝑮

𝒔𝟏𝟐 = 𝒔𝟐𝟏 = - 𝟏
𝑮

[𝟒𝟎
𝟑

] = - 𝟒𝟎
𝟑 𝑮

Using the following equation for each cell

𝑠𝒋𝒊 . 𝒒𝒊 + 𝑠𝒋𝒋 . 𝒒𝒋 + 𝑠 𝒌 . 𝒒𝒌 - 2 𝑨𝒋 . θ =0



∴ 𝟏𝟔𝟎
𝟑 𝑮

𝒒𝟏 - 𝟒𝟎
𝟑 𝑮

𝒒𝟐 - 2θ 20*40 0 ………………. 2

And

-
𝟒𝟎
𝟑 𝑮

𝒒𝟏 + 𝟑𝟐𝟎
𝟑 𝑮

𝒒𝟐 - 2θ 50*40 0………….……. 3

Simplifying

∴ 160 𝒒𝟏 - 40 𝒒𝟐 - 4800 G.θ 0 ……….………… 4

And

- 40 𝒒𝟏 - 320 𝒒𝟐 - 12000 G.θ 0 ……….……….. 5

Solving Eqs.(4) and (5)

∴ 𝒒𝟏 = 43.86 G.θ

  𝒒𝟐 = 44.35 G.θ



Substituting into Eq.(1)

∴ 320 * 𝟏𝟎 𝟑 = 2 (43.86 G.θ * 800 2 (44.35 G.θ * 2000

∴ θ 0.000043 rad /mm 0.043 rad /m

∴ 𝒒𝟏 = 43.86 * 30 * 𝟏𝟎 𝟑 * 0.000043 56.58 N / mm

  𝒒𝟐 = 44.35 * 30 * 𝟏𝟎 𝟑 * 0.000043 57.21 N / mm

𝝉𝟏= 𝒒𝟏
𝒕𝟏

= 56.58
𝟐

= 28.29 Mpa

𝝉𝟐= 𝒒𝟐
𝒕𝟐

= 57.21
𝟏.𝟓

= 38.14 Mpa

𝝉𝟑= 𝒒𝟐 𝒒𝟏
𝒕𝟑

= 0.63
𝟑

= 0.21 Mpa

∴ maximum shear stress = 𝝉𝟐 = 38.14 Mpa
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